Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection
- URL: http://arxiv.org/abs/2406.11311v2
- Date: Mon, 26 Aug 2024 08:47:00 GMT
- Title: Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection
- Authors: Yunsong Wang, Na Zhao, Gim Hee Lee,
- Abstract summary: We propose a novel framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection.
Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines.
- Score: 50.448520056844885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of synthetic data in indoor 3D object detection offers the potential of greatly reducing the manual labor involved in 3D annotations and training effective zero-shot detectors. However, the complicated domain shifts across syn-to-real indoor datasets remains underexplored. In this paper, we propose a novel Object-wise Hierarchical Domain Alignment (OHDA) framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection. Our approach includes an object-aware augmentation strategy to effectively diversify the source domain data, and we introduce a two-branch adaptation framework consisting of an adversarial training branch and a pseudo labeling branch, in order to simultaneously reach holistic-level and class-level domain alignment. The pseudo labeling is further refined through two proposed schemes specifically designed for indoor UDA. Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines, respectively, and consistently outperform the methods adapted from 2D and 3D outdoor scenarios. The code will be publicly available upon paper acceptance.
Related papers
- SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Geometry-Aware Network for Domain Adaptive Semantic Segmentation [64.00345743710653]
We propose a novel Geometry-Aware Network for Domain Adaptation (GANDA) to shrink the domain gaps.
We exploit 3D topology on the point clouds generated from RGB-D images for coordinate-color disentanglement and pseudo-labels refinement in the target domain.
Our model outperforms state-of-the-arts on GTA5->Cityscapes and SYNTHIA->Cityscapes.
arXiv Detail & Related papers (2022-12-02T00:48:44Z) - 3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling [37.315964084413174]
We develop a domain adaptation framework via generating reliable pseudo ground truths of depth from real data to provide direct supervisions.
Specifically, we propose two mechanisms for pseudo-labeling: 1) 2D-based pseudo-labels via measuring the consistency of depth predictions when images are with the same content but different styles; 2) 3D-aware pseudo-labels via a point cloud completion network that learns to complete the depth values in the 3D space.
arXiv Detail & Related papers (2022-09-19T17:54:17Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - DODA: Data-oriented Sim-to-Real Domain Adaptation for 3D Indoor Semantic
Segmentation [36.37396175140793]
We propose a Data-Oriented Domain Adaptation (DODA) framework to mitigate pattern and context gaps.
Our DODA encompasses virtual scan simulation to imitate real-world point cloud patterns and tail-aware cuboid mixing to alleviate the interior context gap.
Our DODA surpasses existing UDA approaches by over 13% on both 3D-FRONT $rightarrow$ ScanNet and 3D-FRONT $rightarrow$ S3DIS.
arXiv Detail & Related papers (2022-04-04T15:52:55Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.