論文の概要: Deep-Learning-based Vulnerability Detection in Binary Executables
- arxiv url: http://arxiv.org/abs/2212.01254v1
- Date: Fri, 25 Nov 2022 10:33:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 13:02:19.277617
- Title: Deep-Learning-based Vulnerability Detection in Binary Executables
- Title(参考訳): ディープラーニングに基づく二項実行装置の脆弱性検出
- Authors: Andreas Schaad, Dominik Binder
- Abstract要約: 本稿では,リカレントニューラルネットワークを用いた教師付き深層学習手法を提案する。
LLVM中間表現を標準化した形で、脆弱なコードの50,651個のデータセットを使用する。
任意の脆弱性の存在を検出するためにバイナリ分類が確立され、正確な脆弱性を特定するためにマルチクラスモデルが訓練された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The identification of vulnerabilities is an important element in the software
development life cycle to ensure the security of software. While vulnerability
identification based on the source code is a well studied field, the
identification of vulnerabilities on basis of a binary executable without the
corresponding source code is more challenging. Recent research [1] has shown,
how such detection can be achieved by deep learning methods. However, that
particular approach is limited to the identification of only 4 types of
vulnerabilities. Subsequently, we analyze to what extent we could cover the
identification of a larger variety of vulnerabilities. Therefore, a supervised
deep learning approach using recurrent neural networks for the application of
vulnerability detection based on binary executables is used. The underlying
basis is a dataset with 50,651 samples of vulnerable code in the form of a
standardized LLVM Intermediate Representation. The vectorised features of a
Word2Vec model are used to train different variations of three basic
architectures of recurrent neural networks (GRU, LSTM, SRNN). A binary
classification was established for detecting the presence of an arbitrary
vulnerability, and a multi-class model was trained for the identification of
the exact vulnerability, which achieved an out-of-sample accuracy of 88% and
77%, respectively. Differences in the detection of different vulnerabilities
were also observed, with non-vulnerable samples being detected with a
particularly high precision of over 98%. Thus, the methodology presented allows
an accurate detection of 23 (compared to 4 [1]) vulnerabilities.
- Abstract(参考訳): 脆弱性の特定は、ソフトウェアのセキュリティを確保するためのソフトウェア開発ライフサイクルの重要な要素である。
ソースコードに基づく脆弱性の識別はよく研究されている分野であるが、対応するソースコードを持たないバイナリ実行ファイルに基づく脆弱性の識別はより困難である。
最近の研究 [1] では、ディープラーニングによってそのような検出をどのように達成できるかが示されている。
しかし、その特定のアプローチは、わずか4種類の脆弱性の特定に限られる。
その後、より広範な脆弱性の特定をどの程度カバーできるかを分析します。
そのため、リカレントニューラルネットワークを用いた教師付きディープラーニングアプローチを用いて、バイナリ実行ファイルに基づく脆弱性検出を行う。
基盤となるベースは,LLVM中間表現の標準化という形で,脆弱性のあるコードの50,651サンプルのデータセットである。
Word2Vecモデルのベクトル化された特徴は、リカレントニューラルネットワーク(GRU、LSTM、SRNN)の3つの基本アーキテクチャの異なるバリエーションを訓練するために使用される。
任意の脆弱性の存在を検出するためにバイナリ分類が確立され, 正解の正当性を特定するためにマルチクラスモデルが訓練され, 正解率は88%, 正解率は77%であった。
脆弱性検出の相違も観察され、特に高い精度で98%以上の試料が検出された。
これにより、23(4[1])の脆弱性を正確に検出することができる。
関連論文リスト
- VulEval: Towards Repository-Level Evaluation of Software Vulnerability Detection [14.312197590230994]
textbfVulEvalという名前のリポジトリレベルの評価システムは、プロセス間およびプロセス内脆弱性の検出性能を同時に評価することを目的としている。
VulEvalは大規模データセットで構成され、合計で4,196のCVEエントリ、232,239の関数、および対応する4,699のリポジトリレベルのソースコードがC/C++プログラミング言語に含まれる。
論文 参考訳(メタデータ) (2024-04-24T02:16:11Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - Learning to Quantize Vulnerability Patterns and Match to Locate
Statement-Level Vulnerabilities [19.6975205650411]
さまざまな脆弱性パターンを表す量子化されたベクトルで構成される脆弱性コードブックが学習される。
推論の間、コードブックは、すべての学習パターンにマッチし、潜在的な脆弱性の存在を予測するために反復される。
提案手法は188,000以上のC/C++関数からなる実世界のデータセットに対して広範に評価された。
論文 参考訳(メタデータ) (2023-05-26T04:13:31Z) - VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase
for Python [8.810543294798485]
VUDENCはディープラーニングベースの脆弱性検出ツールである。
大規模で現実世界のPythonコーパスから脆弱性のあるコードの特徴を学ぶ。
VUDENCのリコール率は78%-87%、精度82%-96%、F1スコア80%-90%である。
論文 参考訳(メタデータ) (2022-01-20T20:29:22Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
Detection [46.76220474310698]
弱教師付き異常検出は、ラベル付きデータと豊富なラベル付きデータから異常検出を学習することを目的としている。
最近の研究は、正常なサンプルと異常なサンプルを特徴空間内の異なる領域に識別的にマッピングしたり、異なる分布に適合させたりすることで、異常検出のためのディープニューラルネットワークを構築している。
本稿では,入力データを,異常検出に使用可能な,より意味のある表現に変換するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-22T16:23:05Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Multi-attentional Deepfake Detection [79.80308897734491]
ディープフェイクによる顔の偽造はインターネットに広まり、深刻な社会的懸念を引き起こしている。
新たなマルチアテンテーショナルディープフェイク検出ネットワークを提案する。
具体的には,1)ネットワークを異なる局所的部分へ配置するための複数の空間的注意ヘッド,2)浅い特徴の微妙なアーティファクトをズームするテクスチャ的特徴拡張ブロック,3)低レベルなテクスチャ特徴と高レベルなセマンティクス特徴をアグリゲートする,の3つの構成要素からなる。
論文 参考訳(メタデータ) (2021-03-03T13:56:14Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z) - $\mu$VulDeePecker: A Deep Learning-Based System for Multiclass
Vulnerability Detection [24.98991662345816]
VulDeePeckerと呼ばれるマルチクラス脆弱性検出のための,最初のディープラーニングベースのシステムを提案する。
関連スポンサーコンテンツ $mu$VulDeePeckerの根底にある重要な洞察は、コードアテンションの概念です。
実験によると、$mu$VulDeePeckerはマルチクラスの脆弱性検出に有効であり、制御依存性の調整がより高い検出能力をもたらす可能性がある。
論文 参考訳(メタデータ) (2020-01-08T01:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。