Counterfactual Learning with General Data-generating Policies
- URL: http://arxiv.org/abs/2212.01925v1
- Date: Sun, 4 Dec 2022 21:07:46 GMT
- Title: Counterfactual Learning with General Data-generating Policies
- Authors: Yusuke Narita, Kyohei Okumura, Akihiro Shimizu, Kohei Yata
- Abstract summary: We develop an OPE method for a class of full support and deficient support logging policies in contextual-bandit settings.
We prove that our method's prediction converges in probability to the true performance of a counterfactual policy as the sample size increases.
- Score: 3.441021278275805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Off-policy evaluation (OPE) attempts to predict the performance of
counterfactual policies using log data from a different policy. We extend its
applicability by developing an OPE method for a class of both full support and
deficient support logging policies in contextual-bandit settings. This class
includes deterministic bandit (such as Upper Confidence Bound) as well as
deterministic decision-making based on supervised and unsupervised learning. We
prove that our method's prediction converges in probability to the true
performance of a counterfactual policy as the sample size increases. We
validate our method with experiments on partly and entirely deterministic
logging policies. Finally, we apply it to evaluate coupon targeting policies by
a major online platform and show how to improve the existing policy.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Conformal Off-Policy Evaluation in Markov Decision Processes [53.786439742572995]
Reinforcement Learning aims at identifying and evaluating efficient control policies from data.
Most methods for this learning task, referred to as Off-Policy Evaluation (OPE), do not come with accuracy and certainty guarantees.
We present a novel OPE method based on Conformal Prediction that outputs an interval containing the true reward of the target policy with a prescribed level of certainty.
arXiv Detail & Related papers (2023-04-05T16:45:11Z) - Supervised Off-Policy Ranking [145.3039527243585]
Off-policy evaluation (OPE) leverages data generated by other policies to evaluate a target policy.
We propose supervised off-policy ranking that learns a policy scoring model by correctly ranking training policies with known performance.
Our method outperforms strong baseline OPE methods in terms of both rank correlation and performance gap between the truly best and the best of the ranked top three policies.
arXiv Detail & Related papers (2021-07-03T07:01:23Z) - Offline Policy Selection under Uncertainty [113.57441913299868]
We consider offline policy selection as learning preferences over a set of policy prospects given a fixed experience dataset.
Access to the full distribution over one's belief of the policy value enables more flexible selection algorithms under a wider range of downstream evaluation metrics.
We show how BayesDICE may be used to rank policies with respect to any arbitrary downstream policy selection metric.
arXiv Detail & Related papers (2020-12-12T23:09:21Z) - Robust Batch Policy Learning in Markov Decision Processes [0.0]
We study the offline data-driven sequential decision making problem in the framework of Markov decision process (MDP)
We propose to evaluate each policy by a set of the average rewards with respect to distributions centered at the policy induced stationary distribution.
arXiv Detail & Related papers (2020-11-09T04:41:21Z) - Off-Policy Evaluation of Bandit Algorithm from Dependent Samples under
Batch Update Policy [8.807587076209566]
The goal of off-policy evaluation (OPE) is to evaluate a new policy using historical data obtained via a behavior policy.
Because the contextual bandit updates the policy based on past observations, the samples are not independent and identically distributed.
This paper tackles this problem by constructing an estimator from a martingale difference sequence (MDS) for the dependent samples.
arXiv Detail & Related papers (2020-10-23T15:22:57Z) - Distributionally Robust Batch Contextual Bandits [20.667213458836734]
Policy learning using historical observational data is an important problem that has found widespread applications.
Existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment.
In this paper, we lift this assumption and aim to learn a distributionally robust policy with incomplete observational data.
arXiv Detail & Related papers (2020-06-10T03:11:40Z) - Doubly Robust Off-Policy Value and Gradient Estimation for Deterministic
Policies [80.42316902296832]
We study the estimation of policy value and gradient of a deterministic policy from off-policy data when actions are continuous.
In this setting, standard importance sampling and doubly robust estimators for policy value and gradient fail because the density ratio does not exist.
We propose several new doubly robust estimators based on different kernelization approaches.
arXiv Detail & Related papers (2020-06-06T15:52:05Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.