論文の概要: Applying Multilingual Models to Question Answering (QA)
- arxiv url: http://arxiv.org/abs/2212.01933v1
- Date: Sun, 4 Dec 2022 21:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 15:28:08.972051
- Title: Applying Multilingual Models to Question Answering (QA)
- Title(参考訳): 質問応答に対する多言語モデルの適用(QA)
- Authors: Ayrton San Joaquin and Filip Skubacz
- Abstract要約: 本研究では,英語,フィンランド語,日本語の3言語を対象とした質問応答課題(QA)に基づいて,単言語および多言語言語モデルの性能について検討する。
我々は,(1)質問が応答可能かどうかを判断するタスクのモデルを開発し,(2)IOBタグを用いたコンテキスト内の回答テキストを識別する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the performance of monolingual and multilingual language models on
the task of question-answering (QA) on three diverse languages: English,
Finnish and Japanese. We develop models for the tasks of (1) determining if a
question is answerable given the context and (2) identifying the answer texts
within the context using IOB tagging. Furthermore, we attempt to evaluate the
effectiveness of a pre-trained multilingual encoder (Multilingual BERT) on
cross-language zero-shot learning for both the answerability and IOB sequence
classifiers.
- Abstract(参考訳): 英語,フィンランド語,日本語の3つの多様な言語における質問応答(qa)タスクにおける単言語および多言語言語モデルの性能について検討した。
我々は,(1)質問が応答可能かどうかを判断するタスクのモデルを開発し,(2)IOBタグを用いたコンテキスト内の回答テキストを識別する。
さらに,事前学習された多言語エンコーダ(多言語bert)が,応答性とiob系列分類器の両方に対するクロスランゲージゼロショット学習に与える影響について評価する。
関連論文リスト
- INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages [26.13077589552484]
Indic-QAは、2つの言語ファミリーから11の主要なインドの言語に対して、公開可能なコンテキストベース質問答えデータセットとして最大である。
我々は、Geminiモデルを用いて合成データセットを生成し、パスを与えられた質問応答ペアを作成し、品質保証のために手作業で検証する。
様々な多言語大言語モデルと,その命令を微調整した変種をベンチマークで評価し,その性能,特に低リソース言語について検討した。
論文 参考訳(メタデータ) (2024-07-18T13:57:16Z) - Cross-lingual QA: A Key to Unlocking In-context Cross-lingual Performance [2.371686365695081]
クロスランガルQAは、質問と回答の部分のみを翻訳し、翻訳コストを削減できる言語間プロンプト手法である。
4つのタイプ的多言語ベンチマークの実験により、クロスランガルQAはモデルに効果的に刺激を与え、クロスランガルの知識を引き出すことを示した。
本研究は,言語間実例を用いたオープンソースMLLMの高速化により,モデルスケールの増大に伴い,性能が向上することを示す。
論文 参考訳(メタデータ) (2023-05-24T15:14:49Z) - Bridging the Language Gap: Knowledge Injected Multilingual Question
Answering [19.768708263635176]
本稿では,異なる言語を理解するモデルの能力を高めるために,一般化された言語間移動フレームワークを提案する。
実世界のデータセット MLQA に対する実験結果から,提案手法は大きなマージンで性能を向上できることが示された。
論文 参考訳(メタデータ) (2023-04-06T15:41:25Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Delving Deeper into Cross-lingual Visual Question Answering [115.16614806717341]
標準学習装置に簡単な修正を加えることで、モノリンガル英語のパフォーマンスへの移行ギャップを大幅に減らすことができることを示す。
多言語マルチモーダル変換器の多言語間VQAを多言語間VQAで解析する。
論文 参考訳(メタデータ) (2022-02-15T18:22:18Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Multilingual Answer Sentence Reranking via Automatically Translated Data [97.98885151955467]
本稿では,現代の質問応答システム(QA)のコアコンポーネントである,多言語回答文選択(AS2)モデルの設計について述べる。
主なアイデアは、あるリソースリッチ言語(英語など)から、他の言語へのデータ転送であり、リソースの観点からはよりリッチである。
論文 参考訳(メタデータ) (2021-02-20T03:52:08Z) - XOR QA: Cross-lingual Open-Retrieval Question Answering [75.20578121267411]
この作業は、言語横断的な設定に応答するオープン検索の質問を拡張します。
我々は,同じ回答を欠いた質問に基づいて,大規模なデータセットを構築した。
論文 参考訳(メタデータ) (2020-10-22T16:47:17Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。