Matrix product states and numerical mode decomposition for the analysis
of gauge-invariant cavity quantum electrodynamics
- URL: http://arxiv.org/abs/2212.01935v2
- Date: Wed, 21 Jun 2023 05:40:24 GMT
- Title: Matrix product states and numerical mode decomposition for the analysis
of gauge-invariant cavity quantum electrodynamics
- Authors: Christopher J. Ryu, Dong-Yeop Na, and Weng C. Chew
- Abstract summary: We numerically verify the Rabi Hamiltonian for models with single quantized electromagnetic mode.
We combine the numerical methods, matrix product states (MPS) and numerical mode decomposition (NMD) for analyzing cavity QED systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a problem of gauge ambiguities with the Rabi Hamiltonian due
to the fact that it can be derived from two formally different but physically
equivalent fundamental Hamiltonians. This problem has recently been resolved
for models with single quantized electromagnetic mode. In this work, we
mathematically and numerically verify this for multimode models. With this
established, we combine the numerical methods, matrix product states (MPS) and
numerical mode decomposition (NMD), for analyzing cavity QED systems. The MPS
method is used to efficiently represent and time evolve a quantum state.
However, since the coupling structure of the Rabi Hamiltonian is incompatible
with MPS, it is numerically transformed into an equivalent Hamiltonian that has
a chain coupling structure, which allows efficient application of MPS. The
technique of NMD is used to extract the numerical electromagnetic modes of an
arbitrary environment. As a proof of concept, this combined approach is
demonstrated by analyzing 1D cavity QED systems in various settings.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Simulating electronic structure on bosonic quantum computers [35.884125235274865]
One of the most promising applications of quantum computing is the simulation of many-fermion problems.
We show how an electronic structure Hamiltonian can be transformed into a system of qumodes through qubit-assisted fermion-to-qumode mapping.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Bootstrapping the gap in quantum spin systems [0.7106986689736826]
We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements.
The method can be applied to any quantum mechanical system with a local Hamiltonian.
arXiv Detail & Related papers (2022-11-07T19:07:29Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Eigenstates of two-level systems in a single-mode quantum field: from
quantum Rabi model to $N$-atom Dicke model [0.0]
We show that the Hamiltonian describing the resonant interaction of $N$ two-level systems with a single-mode electromagnetic quantum field in the Coulomb gauge can be diagonalized with a high degree of accuracy.
arXiv Detail & Related papers (2022-02-07T22:14:13Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Resolving Correlated States of Benzyne on a Quantum Computer with an
Error-Mitigated Quantum Contracted Eigenvalue Solver [0.0]
We show that a contraction of the Schr"odinger equation is solved for the two-electron reduced density matrix (2-RDM)
In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schr"odinger equation onto the two-electron space.
arXiv Detail & Related papers (2021-03-11T18:58:43Z) - Diagonalization of Hamiltonian for finite-sized dispersive media:
Canonical quantization with numerical mode-decomposition (CQ-NMD) [3.032299122358857]
We present a new math-physics modeling approach, called canonical quantization with numerical mode-decomposition.
We provide several numerical simulations that capture the physics of full quantum effects, impossible by classical Maxwell's equations.
arXiv Detail & Related papers (2021-01-28T18:47:33Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.