HierarchyFL: Heterogeneous Federated Learning via Hierarchical
Self-Distillation
- URL: http://arxiv.org/abs/2212.02006v1
- Date: Mon, 5 Dec 2022 03:32:10 GMT
- Title: HierarchyFL: Heterogeneous Federated Learning via Hierarchical
Self-Distillation
- Authors: Jun Xia, Yi Zhang, Zhihao Yue, Ming Hu, Xian Wei, Mingsong Chen
- Abstract summary: Federated learning (FL) has been recognized as a privacy-preserving distributed machine learning paradigm.
FL suffers from model inaccuracy and slow convergence due to the model heterogeneity of the AIoT devices involved.
We propose an efficient framework named HierarchyFL, which uses a small amount of public data for efficient and scalable knowledge.
- Score: 12.409497615805797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has been recognized as a privacy-preserving
distributed machine learning paradigm that enables knowledge sharing among
various heterogeneous artificial intelligence (AIoT) devices through
centralized global model aggregation. FL suffers from model inaccuracy and slow
convergence due to the model heterogeneity of the AIoT devices involved.
Although various existing methods try to solve the bottleneck of the model
heterogeneity problem, most of them improve the accuracy of heterogeneous
models in a coarse-grained manner, which makes it still a great challenge to
deploy large-scale AIoT devices. To alleviate the negative impact of this
problem and take full advantage of the diversity of each heterogeneous model,
we propose an efficient framework named HierarchyFL, which uses a small amount
of public data for efficient and scalable knowledge across a variety of
differently structured models. By using self-distillation and our proposed
ensemble library, each hierarchical model can intelligently learn from each
other on cloud servers. Experimental results on various well-known datasets
show that HierarchyFL can not only maximize the knowledge sharing among various
heterogeneous models in large-scale AIoT systems, but also greatly improve the
model performance of each involved heterogeneous AIoT device.
Related papers
- A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning [14.466679488063217]
One-shot federated learning (FL) limits the communication between the server and clients to a single round.
We propose a unified, data-free, one-shot FL framework (FedHydra) that can effectively address both model and data heterogeneity.
arXiv Detail & Related papers (2024-10-28T15:20:52Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Federated Learning for Data and Model Heterogeneity in Medical Imaging [19.0931609571649]
Federated Learning (FL) is an evolving machine learning method in which multiple clients participate in collaborative learning without sharing their data with each other and the central server.
In real-world applications such as hospitals and industries, FL counters the challenges of data Heterogeneity and Model Heterogeneity.
We propose a method, MDH-FL (Exploiting Model and Data Heterogeneity in FL), to solve such problems.
arXiv Detail & Related papers (2023-07-31T21:08:45Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - FedHM: Efficient Federated Learning for Heterogeneous Models via
Low-rank Factorization [16.704006420306353]
A scalable federated learning framework should address heterogeneous clients equipped with different computation and communication capabilities.
This paper proposes FedHM, a novel federated model compression framework that distributes the heterogeneous low-rank models to clients and then aggregates them into a global full-rank model.
Our solution enables the training of heterogeneous local models with varying computational complexities and aggregates a single global model.
arXiv Detail & Related papers (2021-11-29T16:11:09Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.