PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning
- URL: http://arxiv.org/abs/2212.02011v2
- Date: Thu, 24 Aug 2023 04:21:17 GMT
- Title: PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning
- Authors: Jie Hong, Shi Qiu, Weihao Li, Saeed Anwar, Mehrtash Harandi, Nick
Barnes and Lars Petersson
- Abstract summary: We propose to solve open-set point cloud learning using a novel Point Cut-and-Mix mechanism.
We use the Unknown-Point Simulator to simulate out-of-distribution data in the training stage.
The Unknown-Point Estimator module learns to exploit the point cloud's feature context for discriminating the known and unknown data.
- Score: 72.07350827773442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud learning is receiving increasing attention, however, most
existing point cloud models lack the practical ability to deal with the
unavoidable presence of unknown objects. This paper mainly discusses point
cloud learning under open-set settings, where we train the model without data
from unknown classes and identify them in the inference stage. Basically, we
propose to solve open-set point cloud learning using a novel Point Cut-and-Mix
mechanism consisting of Unknown-Point Simulator and Unknown-Point Estimator
modules. Specifically, we use the Unknown-Point Simulator to simulate
out-of-distribution data in the training stage by manipulating the geometric
context of partial known data. Based on this, the Unknown-Point Estimator
module learns to exploit the point cloud's feature context for discriminating
the known and unknown data. Extensive experiments show the plausibility of
open-set point cloud learning and the effectiveness of our proposed solutions.
Our code is available at \url{https://github.com/ShiQiu0419/pointcam}.
Related papers
- Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
We extend data2vec to the point cloud domain and report encouraging results on several downstream tasks.
We propose point2vec, which unleashes the full potential of data2vec-like pre-training on point clouds.
arXiv Detail & Related papers (2023-03-29T10:08:29Z) - Data Augmentation-free Unsupervised Learning for 3D Point Cloud
Understanding [61.30276576646909]
We propose an augmentation-free unsupervised approach for point clouds to learn transferable point-level features via soft clustering, named SoftClu.
We exploit the affiliation of points to their clusters as a proxy to enable self-training through a pseudo-label prediction task.
arXiv Detail & Related papers (2022-10-06T10:18:16Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - Upsampling Autoencoder for Self-Supervised Point Cloud Learning [11.19408173558718]
We propose a self-supervised pretraining model for point cloud learning without human annotations.
Upsampling operation encourages the network to capture both high-level semantic information and low-level geometric information of the point cloud.
We find that our UAE outperforms previous state-of-the-art methods in shape classification, part segmentation and point cloud upsampling tasks.
arXiv Detail & Related papers (2022-03-21T07:20:37Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - Point Cloud Pre-training by Mixing and Disentangling [35.18101910728478]
Mixing and Disentangling (MD) is a self-supervised learning approach for point cloud pre-training.
We show that the encoder + ours (MD) significantly surpasses that of the encoder trained from scratch and converges quickly.
We hope this self-supervised learning attempt on point clouds can pave the way for reducing the deeply-learned model dependence on large-scale labeled data.
arXiv Detail & Related papers (2021-09-01T15:52:18Z) - OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud
Registration [31.108056345511976]
OMNet is a global feature based iterative network for partial-to-partial point cloud registration.
We learn masks in a coarse-to-fine manner to reject non-overlapping regions, which converting the partial-to-partial registration to the registration of the same shapes.
arXiv Detail & Related papers (2021-03-01T11:59:59Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
This work addresses the problem of point cloud registration using deep neural networks.
We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins.
Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
arXiv Detail & Related papers (2020-07-22T08:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.