Open-Set Multivariate Time-Series Anomaly Detection
- URL: http://arxiv.org/abs/2310.12294v3
- Date: Wed, 7 Aug 2024 17:46:32 GMT
- Title: Open-Set Multivariate Time-Series Anomaly Detection
- Authors: Thomas Lai, Thi Kieu Khanh Ho, Narges Armanfard,
- Abstract summary: Time-series anomaly detection methods assume that only normal samples are available during the training phase.
Supervised methods can be utilized to classify normal and seen anomalies, but they tend to overfit to the seen anomalies during training.
We propose the first algorithm to address the open-set TSAD problem, called Multivariate Open-Set Time-Series Anomaly Detector (MOSAD)
MOSAD is a novel multi-head TSAD framework with a shared representation space and specialized heads, including the Generative head, the Discriminative head, and the Anomaly-Aware Contrastive head.
- Score: 7.127829790714167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous methods for time-series anomaly detection (TSAD) have emerged in recent years, most of which are unsupervised and assume that only normal samples are available during the training phase, due to the challenge of obtaining abnormal data in real-world scenarios. Still, limited samples of abnormal data are often available, albeit they are far from representative of all possible anomalies. Supervised methods can be utilized to classify normal and seen anomalies, but they tend to overfit to the seen anomalies present during training, hence, they fail to generalize to unseen anomalies. We propose the first algorithm to address the open-set TSAD problem, called Multivariate Open-Set Time-Series Anomaly Detector (MOSAD), that leverages only a few shots of labeled anomalies during the training phase in order to achieve superior anomaly detection performance compared to both supervised and unsupervised TSAD algorithms. MOSAD is a novel multi-head TSAD framework with a shared representation space and specialized heads, including the Generative head, the Discriminative head, and the Anomaly-Aware Contrastive head. The latter produces a superior representation space for anomaly detection compared to conventional supervised contrastive learning. Extensive experiments on three real-world datasets establish MOSAD as a new state-of-the-art in the TSAD field.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD) aims to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without further training on the target data.
We introduce a novel approach that learns an in-context residual learning model for GAD, termed InCTRL.
InCTRL is the best performer and significantly outperforms state-of-the-art competing methods.
arXiv Detail & Related papers (2024-03-11T08:07:46Z) - Unsupervised Anomaly Detection using Aggregated Normative Diffusion [46.24703738821696]
Unsupervised anomaly detection has the potential to identify a broader spectrum of anomalies.
Existing state-of-the-art UAD approaches do not generalise well to diverse types of anomalies.
We introduce a new UAD method named Aggregated Normative Diffusion (ANDi)
arXiv Detail & Related papers (2023-12-04T14:02:56Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
Open-set supervised anomaly detection (OSAD) aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies.
We introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous anomaly distributions.
We show that AHL can 1) substantially enhance different state-of-the-art OSAD models in detecting seen and unseen anomalies, and 2) effectively generalize to unseen anomalies in new domains.
arXiv Detail & Related papers (2023-10-19T14:47:11Z) - Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models [8.010966370223985]
This paper presents a novel and practical end-to-end unsupervised TSAD when the training data is contaminated with anomalies.
The introduced approach, called TSAD-C, is devoid of access to abnormality labels during the training phase.
Our experiments conducted on four reliable and diverse datasets conclusively demonstrate that TSAD-C surpasses existing methodologies.
arXiv Detail & Related papers (2023-08-24T05:10:18Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
arXiv Detail & Related papers (2023-04-09T10:40:02Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.