From Malware Samples to Fractal Images: A New Paradigm for
Classification. (Version 2.0, Previous version paper name: Have you ever seen
malware?)
- URL: http://arxiv.org/abs/2212.02341v2
- Date: Thu, 1 Jun 2023 19:36:38 GMT
- Title: From Malware Samples to Fractal Images: A New Paradigm for
Classification. (Version 2.0, Previous version paper name: Have you ever seen
malware?)
- Authors: Ivan Zelinka, Miloslav Szczypka, Jan Plucar, Nikolay Kuznetsov
- Abstract summary: We propose a very unconventional and novel approach to malware visualisation based on dynamic behaviour analysis.
The idea is that the images, which are visually very interesting, are then used to classify malware concerning goodware.
The results of the presented experiments are based on a database of 6 589 997 goodware, 827 853 potentially unwanted applications and 4 174 203 malware samples.
- Score: 0.3670422696827526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To date, a large number of research papers have been written on the
classification of malware, its identification, classification into different
families and the distinction between malware and goodware. These works have
been based on captured malware samples and have attempted to analyse malware
and goodware using various techniques, including techniques from the field of
artificial intelligence. For example, neural networks have played a significant
role in these classification methods. Some of this work also deals with
analysing malware using its visualisation. These works usually convert malware
samples capturing the structure of malware into image structures, which are
then the object of image processing. In this paper, we propose a very
unconventional and novel approach to malware visualisation based on dynamic
behaviour analysis, with the idea that the images, which are visually very
interesting, are then used to classify malware concerning goodware. Our
approach opens an extensive topic for future discussion and provides many new
directions for research in malware analysis and classification, as discussed in
conclusion. The results of the presented experiments are based on a database of
6 589 997 goodware, 827 853 potentially unwanted applications and 4 174 203
malware samples provided by ESET and selected experimental data (images,
generating polynomial formulas and software generating images) are available on
GitHub for interested readers. Thus, this paper is not a comprehensive compact
study that reports the results obtained from comparative experiments but rather
attempts to show a new direction in the field of visualisation with possible
applications in malware analysis.
Related papers
- Malware Classification Based on Image Segmentation [0.0]
This paper proposes a novel approach for the visualization and classification of malware.
We segment the grayscale images generated from malware binary files based on the section categories.
These sub-images are then treated as multi-channel images and input into a deep convolutional neural network for malware classification.
arXiv Detail & Related papers (2024-06-06T08:05:20Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
In recent years there has been a shift from quantifications-based malware detection towards machine learning.
We propose to address the deficiencies in the space of similarity research on binary files, starting from EMBER.
We enhance EMBER with similarity information as well as malware class tags, to enable further research in the similarity space.
arXiv Detail & Related papers (2023-10-03T06:58:45Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
This paper presents SHERLOCK, a self-supervision based deep learning model to detect malware based on the Vision Transformer (ViT) architecture.
Our proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification of types and family with macro-F1 score of.497 and.491 respectively.
arXiv Detail & Related papers (2022-08-15T07:49:58Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
We use malware binary images and then extract different features from the same and then employ different ML-classifiers on the dataset thus obtained.
We show that this technique is successful in differentiating classes of malware based on the features extracted.
arXiv Detail & Related papers (2021-04-14T06:55:52Z) - Malware Detection Using Frequency Domain-Based Image Visualization and
Deep Learning [16.224649756613655]
We propose a novel method to detect and visualize malware through image classification.
The executable binaries are represented as grayscale images obtained from the count of N-grams (N=2) of bytes in the Discrete Cosine Transform domain.
A shallow neural network is trained for classification, and its accuracy is compared with deep-network architectures such as ResNet that are trained using transfer learning.
arXiv Detail & Related papers (2021-01-26T06:07:46Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image.
We present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques.
Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems.
arXiv Detail & Related papers (2020-12-22T10:08:05Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
In this paper, we use several convolutional neural network (CNN) models for static malware classification.
The Inception V3 model achieves a test accuracy of 99.24%, which is better than the accuracy of 98.52% achieved by the current state-of-the-art system.
arXiv Detail & Related papers (2020-10-30T07:39:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.