DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness
- URL: http://arxiv.org/abs/2303.13372v3
- Date: Tue, 3 Oct 2023 02:29:25 GMT
- Title: DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness
- Authors: Shoumik Saha, Wenxiao Wang, Yigitcan Kaya, Soheil Feizi, Tudor
Dumitras
- Abstract summary: We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
- Score: 58.23214712926585
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine Learning (ML) models have been utilized for malware detection for
over two decades. Consequently, this ignited an ongoing arms race between
malware authors and antivirus systems, compelling researchers to propose
defenses for malware-detection models against evasion attacks. However, most if
not all existing defenses against evasion attacks suffer from sizable
performance degradation and/or can defend against only specific attacks, which
makes them less practical in real-world settings. In this work, we develop a
certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the
de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact
of adversarial bytes while maximally preserving local structures of the
executables. After showing how DRSM is theoretically robust against attacks
with contiguous adversarial bytes, we verify its performance and certified
robustness experimentally, where we observe only marginal accuracy drops as the
cost of robustness. To our knowledge, we are the first to offer certified
robustness in the realm of static detection of malware executables. More
surprisingly, through evaluating DRSM against 9 empirical attacks of different
types, we observe that the proposed defense is empirically robust to some
extent against a diverse set of attacks, some of which even fall out of the
scope of its original threat model. In addition, we collected 15.5K recent
benign raw executables from diverse sources, which will be made public as a
dataset called PACE (Publicly Accessible Collection(s) of Executables) to
alleviate the scarcity of publicly available benign datasets for studying
malware detection and provide future research with more representative data of
the time.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - MalPurifier: Enhancing Android Malware Detection with Adversarial
Purification against Evasion Attacks [19.68134775248897]
MalPurifier exploits adversarial purification to eliminate perturbations independently, resulting in attack mitigation in a light and flexible way.
Experimental results on two Android malware datasets demonstrate that MalPurifier outperforms the state-of-the-art defenses.
arXiv Detail & Related papers (2023-12-11T14:48:43Z) - PAD: Towards Principled Adversarial Malware Detection Against Evasion
Attacks [17.783849474913726]
We propose a new adversarial training framework, termed Principled Adversarial Malware Detection (PAD)
PAD lays on a learnable convex measurement that quantifies distribution-wise discrete perturbations to protect malware detectors from adversaries.
PAD can harden ML-based malware detection against 27 evasion attacks with detection accuracies greater than 83.45%.
It matches or outperforms many anti-malware scanners in VirusTotal against realistic adversarial malware.
arXiv Detail & Related papers (2023-02-22T12:24:49Z) - Single-Shot Black-Box Adversarial Attacks Against Malware Detectors: A
Causal Language Model Approach [5.2424255020469595]
Adversarial Malware example Generation aims to generate evasive malware variants.
Black-box method has gained more attention than white-box methods.
In this study, we show that a novel DL-based causal language model enables single-shot evasion.
arXiv Detail & Related papers (2021-12-03T05:29:50Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroid is a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios.
We show that EvadeDroid achieves evasion rates of 80%-95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1-9 queries.
arXiv Detail & Related papers (2021-10-07T09:39:40Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
In this paper we propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function.
We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness.
arXiv Detail & Related papers (2020-03-03T18:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.