SceneRF: Self-Supervised Monocular 3D Scene Reconstruction with Radiance
Fields
- URL: http://arxiv.org/abs/2212.02501v4
- Date: Thu, 24 Aug 2023 22:14:53 GMT
- Title: SceneRF: Self-Supervised Monocular 3D Scene Reconstruction with Radiance
Fields
- Authors: Anh-Quan Cao and Raoul de Charette
- Abstract summary: SceneRF is a self-supervised monocular scene reconstruction method using only posed image sequences for training.
At inference, a single input image suffices to hallucinate novel depth views which are fused together to obtain 3D scene reconstruction.
- Score: 19.740018132105757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D reconstruction from a single 2D image was extensively covered in the
literature but relies on depth supervision at training time, which limits its
applicability. To relax the dependence to depth we propose SceneRF, a
self-supervised monocular scene reconstruction method using only posed image
sequences for training. Fueled by the recent progress in neural radiance fields
(NeRF) we optimize a radiance field though with explicit depth optimization and
a novel probabilistic sampling strategy to efficiently handle large scenes. At
inference, a single input image suffices to hallucinate novel depth views which
are fused together to obtain 3D scene reconstruction. Thorough experiments
demonstrate that we outperform all baselines for novel depth views synthesis
and scene reconstruction, on indoor BundleFusion and outdoor SemanticKITTI.
Code is available at https://astra-vision.github.io/SceneRF .
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
arXiv Detail & Related papers (2023-12-05T18:59:58Z) - PERF: Panoramic Neural Radiance Field from a Single Panorama [109.31072618058043]
PERF is a novel view synthesis framework that trains a panoramic neural radiance field from a single panorama.
We propose a novel collaborative RGBD inpainting method and a progressive inpainting-and-erasing method to lift up a 360-degree 2D scene to a 3D scene.
Our PERF can be widely used for real-world applications, such as panorama-to-3D, text-to-3D, and 3D scene stylization applications.
arXiv Detail & Related papers (2023-10-25T17:59:01Z) - 3D Reconstruction with Generalizable Neural Fields using Scene Priors [71.37871576124789]
We introduce training generalizable Neural Fields incorporating scene Priors (NFPs)
The NFP network maps any single-view RGB-D image into signed distance and radiance values.
A complete scene can be reconstructed by merging individual frames in the volumetric space WITHOUT a fusion module.
arXiv Detail & Related papers (2023-09-26T18:01:02Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
We propose SfMNeRF, a method to better synthesize novel views as well as reconstruct the 3D-scene geometry.
SfMNeRF employs the epipolar, photometric consistency, depth smoothness, and position-of-matches constraints to explicitly reconstruct the 3D-scene structure.
Experiments on two public datasets demonstrate that SfMNeRF surpasses state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T13:37:17Z) - Multi-Plane Neural Radiance Fields for Novel View Synthesis [5.478764356647437]
Novel view synthesis is a long-standing problem that revolves around rendering frames of scenes from novel camera viewpoints.
In this work, we examine the performance, generalization, and efficiency of single-view multi-plane neural radiance fields.
We propose a new multiplane NeRF architecture that accepts multiple views to improve the synthesis results and expand the viewing range.
arXiv Detail & Related papers (2023-03-03T06:32:55Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRF is a learning framework that predicts a continuous neural scene representation conditioned on one or few input images.
We conduct experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects.
In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction.
arXiv Detail & Related papers (2020-12-03T18:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.