ReconFusion: 3D Reconstruction with Diffusion Priors
- URL: http://arxiv.org/abs/2312.02981v1
- Date: Tue, 5 Dec 2023 18:59:58 GMT
- Title: ReconFusion: 3D Reconstruction with Diffusion Priors
- Authors: Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao,
Daniel Watson, Pratul P. Srinivasan, Dor Verbin, Jonathan T. Barron, Ben
Poole, Aleksander Holynski
- Abstract summary: We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
- Score: 104.73604630145847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D reconstruction methods such as Neural Radiance Fields (NeRFs) excel at
rendering photorealistic novel views of complex scenes. However, recovering a
high-quality NeRF typically requires tens to hundreds of input images,
resulting in a time-consuming capture process. We present ReconFusion to
reconstruct real-world scenes using only a few photos. Our approach leverages a
diffusion prior for novel view synthesis, trained on synthetic and multiview
datasets, which regularizes a NeRF-based 3D reconstruction pipeline at novel
camera poses beyond those captured by the set of input images. Our method
synthesizes realistic geometry and texture in underconstrained regions while
preserving the appearance of observed regions. We perform an extensive
evaluation across various real-world datasets, including forward-facing and
360-degree scenes, demonstrating significant performance improvements over
previous few-view NeRF reconstruction approaches.
Related papers
- MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References [49.71130133080821]
MaRINeR is a refinement method that leverages information of a nearby mapping image to improve the rendering of a target viewpoint.
We show improved renderings in quantitative metrics and qualitative examples from both explicit and implicit scene representations.
arXiv Detail & Related papers (2024-07-18T17:50:03Z) - SceneRF: Self-Supervised Monocular 3D Scene Reconstruction with Radiance
Fields [19.740018132105757]
SceneRF is a self-supervised monocular scene reconstruction method using only posed image sequences for training.
At inference, a single input image suffices to hallucinate novel depth views which are fused together to obtain 3D scene reconstruction.
arXiv Detail & Related papers (2022-12-05T18:59:57Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - Urban Radiance Fields [77.43604458481637]
We perform 3D reconstruction and novel view synthesis from data captured by scanning platforms commonly deployed for world mapping in urban outdoor environments.
Our approach extends Neural Radiance Fields, which has been demonstrated to synthesize realistic novel images for small scenes in controlled settings.
Each of these three extensions provides significant performance improvements in experiments on Street View data.
arXiv Detail & Related papers (2021-11-29T15:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.