Improved Beam Search for Hallucination Mitigation in Abstractive
Summarization
- URL: http://arxiv.org/abs/2212.02712v2
- Date: Tue, 14 Nov 2023 17:12:36 GMT
- Title: Improved Beam Search for Hallucination Mitigation in Abstractive
Summarization
- Authors: Arvind Krishna Sridhar, Erik Visser
- Abstract summary: In this paper, we investigate the use of the Natural Language Inference (NLI) entailment metric to detect and prevent hallucinations in summary generation.
We propose an NLI-assisted beam re-ranking mechanism by computing entailment probability scores between the input context and summarization model-generated beams.
Our proposed algorithm significantly outperforms vanilla beam decoding on XSum and CNN/DM datasets.
- Score: 1.2328446298523066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancement in large pretrained language models has significantly improved
their performance for conditional language generation tasks including
summarization albeit with hallucinations. To reduce hallucinations,
conventional methods proposed improving beam search or using a fact checker as
a postprocessing step. In this paper, we investigate the use of the Natural
Language Inference (NLI) entailment metric to detect and prevent hallucinations
in summary generation. We propose an NLI-assisted beam re-ranking mechanism by
computing entailment probability scores between the input context and
summarization model-generated beams during saliency-enhanced greedy decoding.
Moreover, a diversity metric is introduced to compare its effectiveness against
vanilla beam search. Our proposed algorithm significantly outperforms vanilla
beam decoding on XSum and CNN/DM datasets.
Related papers
- Pre-Training Multimodal Hallucination Detectors with Corrupted Grounding Data [4.636499986218049]
Multimodal language models can exhibit hallucinations in their outputs, which limits their reliability.
We propose an approach to improve the sample efficiency of these models by creating corrupted grounding data.
arXiv Detail & Related papers (2024-08-30T20:11:00Z) - Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused [44.37155553647802]
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks.
They occasionally yield content that factually inaccurate or discordant with the expected output.
Recent works have investigated contrastive decoding between the original model and an amateur model with induced hallucination.
We introduce a novel contrastive decoding framework termed LOL (LOwer Layer Matters)
arXiv Detail & Related papers (2024-08-16T14:23:59Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Don't Say What You Don't Know: Improving the Consistency of Abstractive
Summarization by Constraining Beam Search [54.286450484332505]
We analyze the connection between hallucinations and training data, and find evidence that models hallucinate because they train on target summaries that are unsupported by the source.
We present PINOCCHIO, a new decoding method that improves the consistency of a transformer-based abstractive summarizer by constraining beam search to avoid hallucinations.
arXiv Detail & Related papers (2022-03-16T07:13:52Z) - Detecting Hallucinated Content in Conditional Neural Sequence Generation [165.68948078624499]
We propose a task to predict whether each token in the output sequence is hallucinated (not contained in the input)
We also introduce a method for learning to detect hallucinations using pretrained language models fine tuned on synthetic data.
arXiv Detail & Related papers (2020-11-05T00:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.