AutoHall: Automated Hallucination Dataset Generation for Large Language Models
- URL: http://arxiv.org/abs/2310.00259v2
- Date: Fri, 19 Jul 2024 11:48:21 GMT
- Title: AutoHall: Automated Hallucination Dataset Generation for Large Language Models
- Authors: Zouying Cao, Yifei Yang, Hai Zhao,
- Abstract summary: This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
- Score: 56.92068213969036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Large language models (LLMs) have garnered widespread applications across various domains due to their powerful language understanding and generation capabilities, the detection of non-factual or hallucinatory content generated by LLMs remains scarce. Currently, one significant challenge in hallucination detection is the laborious task of time-consuming and expensive manual annotation of the hallucinatory generation. To address this issue, this paper first introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall. Furthermore, we propose a zero-resource and black-box hallucination detection method based on self-contradiction. We conduct experiments towards prevalent open-/closed-source LLMs, achieving superior hallucination detection performance compared to extant baselines. Moreover, our experiments reveal variations in hallucination proportions and types among different models.
Related papers
- Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning [15.156359255401812]
We propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models.
The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
arXiv Detail & Related papers (2024-04-16T07:14:32Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - Trapping LLM Hallucinations Using Tagged Context Prompts [11.655802601887197]
We propose a novel method to recognize and flag instances when large language models perform outside their domain knowledge.
We find that the use of context combined with embedded tags can successfully combat hallucinations within generative language models.
arXiv Detail & Related papers (2023-06-09T17:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.