論文の概要: CURO: Curriculum Learning for Relative Overgeneralization
- arxiv url: http://arxiv.org/abs/2212.02733v3
- Date: Mon, 23 Sep 2024 16:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:35:37.500612
- Title: CURO: Curriculum Learning for Relative Overgeneralization
- Title(参考訳): CURO:相対的オーバージェネレーションのためのカリキュラム学習
- Authors: Lin Shi, Qiyuan Liu, Bei Peng,
- Abstract要約: 相対的オーバージェネリゼーション(Relative Over generalization, RO)は、協調的なマルチエージェントタスクで発生する病理である。
相対オーバージェネリゼーション(CURO)のためのカリキュラム学習という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 6.573807158449973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relative overgeneralization (RO) is a pathology that can arise in cooperative multi-agent tasks when the optimal joint action's utility falls below that of a sub-optimal joint action. RO can cause the agents to get stuck into local optima or fail to solve cooperative tasks requiring significant coordination between agents within a given timestep. In this work, we empirically find that, in multi-agent reinforcement learning (MARL), both value-based and policy gradient MARL algorithms can suffer from RO and fail to learn effective coordination policies. To better overcome RO, we propose a novel approach called curriculum learning for relative overgeneralization (CURO). To solve a target task that exhibits strong RO, in CURO, we first fine-tune the reward function of the target task to generate source tasks to train the agent. Then, to effectively transfer the knowledge acquired in one task to the next, we use a transfer learning method that combines value function transfer with buffer transfer, which enables more efficient exploration in the target task. CURO is general and can be applied to both value-based and policy gradient MARL methods. We demonstrate that, when applied to QMIX, HAPPO, and HATRPO, CURO can successfully overcome severe RO, achieve improved performance, and outperform baseline methods in a variety of challenging cooperative multi-agent tasks.
- Abstract(参考訳): 相対的過一般化(英: Relative Over generalization, RO)は、最適関節作用の効用が準最適関節作用の効用より下降した場合に、協調的マルチエージェントタスクで生じる病理である。
ROは、エージェントを局所的な最適状態に陥れさせるか、あるいは特定の時間内にエージェント間の重要な調整を必要とする協調的なタスクを解くのに失敗する。
本研究では、マルチエージェント強化学習(MARL)において、値ベースアルゴリズムとポリシー勾配アルゴリズムの両方がROに悩まされ、効果的なコーディネーションポリシーを学習できないことを実証的に見出した。
ROを克服するために,相対的オーバージェネリゼーション(CURO)のためのカリキュラム学習という新しい手法を提案する。
強力なROを示すターゲットタスクを解決するため,CUROではまず目標タスクの報酬関数を微調整し,エージェントを訓練するためのソースタスクを生成する。
そこで我々は,あるタスクにおいて得られた知識を効率よく次のタスクに転送するために,値関数転送とバッファ転送を組み合わせた伝達学習手法を用いて,目的タスクのより効率的な探索を可能にする。
CUROは一般的に、値ベースおよびポリシー勾配MARL法の両方に適用できる。
QMIX, HAPPO, HATRPOに適用した場合, CUROは重大ROを克服し, 性能を向上し, 多様な協調型マルチエージェントタスクにおいて, ベースライン法より優れていることを示す。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Multi-Agent Reinforcement Learning with a Hierarchy of Reward Machines [5.600971575680638]
Reward Machines (RMs) を用いた協調型マルチエージェント強化学習(MARL)問題の検討
より複雑なシナリオを扱えるRM(MAHRM)階層のマルチエージェント強化学習を提案する。
3つの協調MARLドメインの実験結果から、MAHRMは、他のMARLメソッドよりも高いレベルの事象の事前知識の方が優れていることが示された。
論文 参考訳(メタデータ) (2024-03-08T06:38:22Z) - Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
本稿では,エージェントが一括して斬新な行動を示すような報奨戦略を提案する。
ジムは連続した環境で機能するように設計されたノベルティの集中的な尺度に基づいて共同軌道に報いる。
その結果、最適戦略が高レベルの調整を必要とするタスクの解決には、共同探索が不可欠であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T13:02:00Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
本研究は,訓練作業中の行動伝達子を学習するための,新たな客観的機能を導入する。
理論的には、転送されたポリシーとアクショントランスレータの値が、ソースポリシーの値に近似可能であることを検証する。
本稿では,アクショントランスレータとコンテキストベースメタRLアルゴリズムを組み合わせることで,データ収集の効率化と,メタトレーニング時の効率的な探索を提案する。
論文 参考訳(メタデータ) (2022-07-19T04:58:06Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
q$-learningの過大評価は、シングルエージェント強化学習で広く研究されている重要な問題である。
ベースラインから逸脱する大きな関節動作値をペナライズする,新たな正規化ベースの更新方式を提案する。
本手法は,StarCraft IIマイクロマネジメントの課題に対して,一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-22T14:18:39Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - Reward Machines for Cooperative Multi-Agent Reinforcement Learning [30.84689303706561]
協調型マルチエージェント強化学習において、エージェントの集合は共通の目標を達成するために共有環境で対話することを学ぶ。
本稿では、報酬関数の構造化表現として使われる単純な機械である報酬機械(RM)を用いて、チームのタスクを符号化する手法を提案する。
マルチエージェント設定におけるRMの新たな解釈は、要求されるチームメイト相互依存性を明示的に符号化し、チームレベルのタスクを個々のエージェントのサブタスクに分解することを可能にする。
論文 参考訳(メタデータ) (2020-07-03T23:08:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。