A multi-language toolkit for the semi-automated checking of research outputs
- URL: http://arxiv.org/abs/2212.02935v3
- Date: Tue, 26 Nov 2024 10:53:40 GMT
- Title: A multi-language toolkit for the semi-automated checking of research outputs
- Authors: Richard J. Preen, Maha Albashir, Simon Davy, Jim Smith,
- Abstract summary: This article presents a free and open source toolkit that supports the semi-automated checking of research outputs (SACRO) for privacy disclosure within secure data environments.
SACRO is a framework that applies best-practice principles-based statistical disclosure control (SDC) techniques on-the-fly as researchers conduct their analyses.
The toolkit is composed of a lightweight Python package that sits over well-known analysis tools that produce outputs such as tables, plots, and statistical models.
- Score: 0.44998333629984877
- License:
- Abstract: This article presents a free and open source toolkit that supports the semi-automated checking of research outputs (SACRO) for privacy disclosure within secure data environments. SACRO is a framework that applies best-practice principles-based statistical disclosure control (SDC) techniques on-the-fly as researchers conduct their analyses. SACRO is designed to assist human checkers rather than seeking to replace them as with current automated rules-based approaches. The toolkit is composed of a lightweight Python package that sits over well-known analysis tools that produce outputs such as tables, plots, and statistical models. This package adds functionality to (i) automatically identify potentially disclosive outputs against a range of commonly used disclosure tests; (ii) apply optional disclosure mitigation strategies as requested; (iii) report reasons for applying SDC; and (iv) produce simple summary documents trusted research environment staff can use to streamline their workflow and maintain auditable records. This creates an explicit change in the dynamics so that SDC is something done with researchers rather than to them, and enables more efficient communication with checkers. A graphical user interface supports human checkers by displaying the requested output and results of the checks in an immediately accessible format, highlighting identified issues, potential mitigation options, and tracking decisions made. The major analytical programming languages used by researchers (Python, R, and Stata) are supported by providing front-end packages that interface with the core Python back-end. Source code, packages, and documentation are available under MIT license at https://github.com/AI-SDC/ACRO
Related papers
- RobPy: a Python Package for Robust Statistical Methods [1.2233362977312945]
RobPy offers a wide range of robust methods in Python, built upon established libraries including NumPy, SciPy, and scikit-learn.
This paper presents the structure of the RobPy package, demonstrates its functionality through examples, and compares its features to existing implementations in other statistical software.
arXiv Detail & Related papers (2024-11-04T10:27:30Z) - forester: A Tree-Based AutoML Tool in R [0.0]
The forester is an open-source AutoML package implemented in R for training high-quality tree-based models.
It fully supports binary and multiclass classification, regression, and partially survival analysis tasks.
With just a few functions, the user is capable of detecting issues regarding the data quality, preparing the preprocessing pipeline, training and tuning tree-based models, evaluating the results, and creating the report for further analysis.
arXiv Detail & Related papers (2024-09-07T10:39:10Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Quantitative Assurance and Synthesis of Controllers from Activity
Diagrams [4.419843514606336]
Probabilistic model checking is a widely used formal verification technique to automatically verify qualitative and quantitative properties.
This makes it not accessible for researchers and engineers who may not have the required knowledge.
We propose a comprehensive verification framework for ADs, including a new profile for probability time, quality annotations, a semantics interpretation of ADs in three Markov models, and a set of transformation rules from activity diagrams to the PRISM language.
Most importantly, we developed algorithms for transformation and implemented them in a tool, called QASCAD, using model-based techniques, for fully automated verification.
arXiv Detail & Related papers (2024-02-29T22:40:39Z) - A Semi-Automated Solution Approach Recommender for a Given Use Case: a Case Study for AI/ML in Oncology via Scopus and OpenAI [0.6749750044497732]
Our proposed tool, SARBOLD-LLM, allows discovering and choosing among methods related to a given problem.
It provides additional information about their uses in the literature to derive decision-making insights.
It is a useful tool to select which methods to investigate first and comes as a complement to surveys.
arXiv Detail & Related papers (2023-07-10T14:07:28Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
The massive collection of user posts across social media platforms is primarily untapped for artificial intelligence (AI) use cases.
Natural language processing (NLP) is a subfield of AI that leverages bodies of documents, known as corpora, to train computers in human-like language understanding.
This study demonstrates that the applied results of unsupervised analysis allow a computer to predict either negative, positive, or neutral user sentiment towards plastic surgery.
arXiv Detail & Related papers (2023-07-05T20:16:20Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
We consider the problem of composed image retrieval (CIR)
It aims to train a model that can fuse multi-modal information, e.g., text and images, to accurately retrieve images that match the query, extending the user's expression ability.
arXiv Detail & Related papers (2023-06-12T17:56:01Z) - Methodology to Create Analysis-Naive Holdout Records as well as Train
and Test Records for Machine Learning Analyses in Healthcare [0.0]
The purpose of the holdout sample is to preserve data for research studies that will be analysis-naive and randomly selected from the full dataset.
The methodology suggested for creating holdouts is a modification of k-fold cross validation, which takes into account randomization and efficiently allows a three-way split.
arXiv Detail & Related papers (2022-05-09T00:51:08Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - PyODDS: An End-to-end Outlier Detection System with Automated Machine
Learning [55.32009000204512]
We present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support.
Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space.
It also provides unified interfaces and visualizations for users with or without data science or machine learning background.
arXiv Detail & Related papers (2020-03-12T03:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.