DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
- URL: http://arxiv.org/abs/2407.01725v1
- Date: Mon, 1 Jul 2024 18:58:22 GMT
- Title: DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
- Authors: Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, Peter Clark,
- Abstract summary: We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
- Score: 50.36636396660163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
Related papers
- BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
We introduce DSBench, a benchmark designed to evaluate data science agents with realistic tasks.
This benchmark includes 466 data analysis tasks and 74 data modeling tasks, sourced from Eloquence and Kaggle competitions.
Our evaluation of state-of-the-art LLMs, LVLMs, and agents shows that they struggle with most tasks, with the best agent solving only 34.12% of data analysis tasks and achieving a 34.74% Relative Performance Gap (RPG)
arXiv Detail & Related papers (2024-09-12T02:08:00Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets.
We use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents.
We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks.
arXiv Detail & Related papers (2024-09-03T17:54:40Z) - CoIR: A Comprehensive Benchmark for Code Information Retrieval Models [56.691926887209895]
We present textbfname (textbfInformation textbfRetrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities.
name comprises textbften meticulously curated code datasets, spanning textbfeight distinctive retrieval tasks across textbfseven diverse domains.
We evaluate nine widely used retrieval models using name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems.
arXiv Detail & Related papers (2024-07-03T07:58:20Z) - Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI [3.9773527114058855]
We propose a novel methodology that combines the generative capabilities of Large Language Models with the fast and accurate retrieval capabilities of vector databases.
The developed model, Generative Text Retrieval (GTR), is adaptable to both unstructured and structured data with minor refinement.
The refined model, Generative Tabular Text Retrieval (GTR-T), demonstrated its efficiency in large database querying.
arXiv Detail & Related papers (2024-06-13T23:08:06Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
We propose a dataset curation agent benchmark, DCA-Bench, to measure large language models' capability of detecting hidden dataset quality issues.
Specifically, we collect diverse real-world dataset quality issues from eight open dataset platforms as a testbed.
The proposed benchmark can also serve as a testbed for measuring the capability of LLMs in problem discovery rather than just problem-solving.
arXiv Detail & Related papers (2024-06-11T14:02:23Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks have garnered significant interest within database and AI communities.
silos of multimodal data sources make it difficult to identify appropriate data sources for accomplishing the task at hand.
We propose CMDBench, a benchmark modeling the complexity of enterprise data platforms.
arXiv Detail & Related papers (2024-06-02T01:10:41Z) - DataAgent: Evaluating Large Language Models' Ability to Answer Zero-Shot, Natural Language Queries [0.0]
We evaluate OpenAI's GPT-3.5 as a "Language Data Scientist" (LDS)
The model was tested on a diverse set of benchmark datasets to evaluate its performance across multiple standards.
arXiv Detail & Related papers (2024-03-29T22:59:34Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
Data analysis is a crucial analytical process to generate in-depth studies and conclusive insights.
We propose to automatically generate high-quality answer annotations leveraging the code-generation capabilities of LLMs.
Our DACO-RL algorithm is evaluated by human annotators to produce more helpful answers than SFT model in 57.72% cases.
arXiv Detail & Related papers (2024-03-04T22:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.