Document-Level Abstractive Summarization
- URL: http://arxiv.org/abs/2212.03013v1
- Date: Tue, 6 Dec 2022 14:39:09 GMT
- Title: Document-Level Abstractive Summarization
- Authors: Gon\c{c}alo Raposo and Afonso Raposo and Ana Sofia Carmo
- Abstract summary: We study how efficient Transformer techniques can be used to improve the automatic summarization of very long texts.
We propose a novel retrieval-enhanced approach which reduces the cost of generating a summary of the entire document by processing smaller chunks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of automatic text summarization produces a concise and fluent text
summary while preserving key information and overall meaning. Recent approaches
to document-level summarization have seen significant improvements in recent
years by using models based on the Transformer architecture. However, the
quadratic memory and time complexities with respect to the sequence length make
them very expensive to use, especially with long sequences, as required by
document-level summarization. Our work addresses the problem of document-level
summarization by studying how efficient Transformer techniques can be used to
improve the automatic summarization of very long texts. In particular, we will
use the arXiv dataset, consisting of several scientific papers and the
corresponding abstracts, as baselines for this work. Then, we propose a novel
retrieval-enhanced approach based on the architecture which reduces the cost of
generating a summary of the entire document by processing smaller chunks. The
results were below the baselines but suggest a more efficient memory a
consumption and truthfulness.
Related papers
- Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z) - Summ^N: A Multi-Stage Summarization Framework for Long Input Dialogues
and Documents [13.755637074366813]
SummN is a simple, flexible, and effective multi-stage framework for input texts longer than the maximum context lengths of typical pretrained LMs.
It can process input text of arbitrary length by adjusting the number of stages while keeping the LM context size fixed.
Our experiments demonstrate that SummN significantly outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2021-10-16T06:19:54Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMER is a Transformer-based pre-trained model with multi-granularity sparse attentions for extractive summarization.
Experiments on both single- and multi-document summarization tasks show that HETFORMER achieves state-of-the-art performance in Rouge F1.
arXiv Detail & Related papers (2021-10-12T22:42:31Z) - Document-Level Text Simplification: Dataset, Criteria and Baseline [75.58761130635824]
We define and investigate a new task of document-level text simplification.
Based on Wikipedia dumps, we first construct a large-scale dataset named D-Wikipedia.
We propose a new automatic evaluation metric called D-SARI that is more suitable for the document-level simplification task.
arXiv Detail & Related papers (2021-10-11T08:15:31Z) - Automated News Summarization Using Transformers [4.932130498861987]
We will be presenting a comprehensive comparison of a few transformer architecture based pre-trained models for text summarization.
For analysis and comparison, we have used the BBC news dataset that contains text data that can be used for summarization and human generated summaries.
arXiv Detail & Related papers (2021-04-23T04:22:33Z) - On Generating Extended Summaries of Long Documents [16.149617108647707]
We present a new method for generating extended summaries of long papers.
Our method exploits hierarchical structure of the documents and incorporates it into an extractive summarization model.
Our analysis shows that our multi-tasking approach can adjust extraction probability distribution to the favor of summary-worthy sentences.
arXiv Detail & Related papers (2020-12-28T08:10:28Z) - Partially-Aligned Data-to-Text Generation with Distant Supervision [69.15410325679635]
We propose a new generation task called Partially-Aligned Data-to-Text Generation (PADTG)
It is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains.
Our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.
arXiv Detail & Related papers (2020-10-03T03:18:52Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - A Divide-and-Conquer Approach to the Summarization of Long Documents [4.863209463405628]
We present a novel divide-and-conquer method for the neural summarization of long documents.
Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into smaller summarization problems.
We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance.
arXiv Detail & Related papers (2020-04-13T20:38:49Z) - Pre-training for Abstractive Document Summarization by Reinstating
Source Text [105.77348528847337]
This paper presents three pre-training objectives which allow us to pre-train a Seq2Seq based abstractive summarization model on unlabeled text.
Experiments on two benchmark summarization datasets show that all three objectives can improve performance upon baselines.
arXiv Detail & Related papers (2020-04-04T05:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.