On Generating Extended Summaries of Long Documents
- URL: http://arxiv.org/abs/2012.14136v1
- Date: Mon, 28 Dec 2020 08:10:28 GMT
- Title: On Generating Extended Summaries of Long Documents
- Authors: Sajad Sotudeh, Arman Cohan, Nazli Goharian
- Abstract summary: We present a new method for generating extended summaries of long papers.
Our method exploits hierarchical structure of the documents and incorporates it into an extractive summarization model.
Our analysis shows that our multi-tasking approach can adjust extraction probability distribution to the favor of summary-worthy sentences.
- Score: 16.149617108647707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior work in document summarization has mainly focused on generating short
summaries of a document. While this type of summary helps get a high-level view
of a given document, it is desirable in some cases to know more detailed
information about its salient points that can't fit in a short summary. This is
typically the case for longer documents such as a research paper, legal
document, or a book. In this paper, we present a new method for generating
extended summaries of long papers. Our method exploits hierarchical structure
of the documents and incorporates it into an extractive summarization model
through a multi-task learning approach. We then present our results on three
long summarization datasets, arXiv-Long, PubMed-Long, and Longsumm. Our method
outperforms or matches the performance of strong baselines. Furthermore, we
perform a comprehensive analysis over the generated results, shedding insights
on future research for long-form summary generation task. Our analysis shows
that our multi-tasking approach can adjust extraction probability distribution
to the favor of summary-worthy sentences across diverse sections. Our datasets,
and codes are publicly available at
https://github.com/Georgetown-IR-Lab/ExtendedSumm
Related papers
- Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization [48.57273563299046]
We propose the task of Stepwise Summarization, which aims to generate a new appended summary each time a new document is proposed.
The appended summary should not only summarize the newly added content but also be coherent with the previous summary.
We show that SSG achieves state-of-the-art performance in terms of both automatic metrics and human evaluations.
arXiv Detail & Related papers (2024-06-08T05:37:26Z) - On Context Utilization in Summarization with Large Language Models [83.84459732796302]
Large language models (LLMs) excel in abstractive summarization tasks, delivering fluent and pertinent summaries.
Recent advancements have extended their capabilities to handle long-input contexts, exceeding 100k tokens.
We conduct the first comprehensive study on context utilization and position bias in summarization.
arXiv Detail & Related papers (2023-10-16T16:45:12Z) - Generating a Structured Summary of Numerous Academic Papers: Dataset and
Method [20.90939310713561]
We propose BigSurvey, the first large-scale dataset for generating comprehensive summaries of numerous academic papers on each topic.
We collect target summaries from more than seven thousand survey papers and utilize their 430 thousand reference papers' abstracts as input documents.
To organize the diverse content from dozens of input documents, we propose a summarization method named category-based alignment and sparse transformer (CAST)
arXiv Detail & Related papers (2023-02-09T11:42:07Z) - Fine-Grained Distillation for Long Document Retrieval [86.39802110609062]
Long document retrieval aims to fetch query-relevant documents from a large-scale collection.
Knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder.
We propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers.
arXiv Detail & Related papers (2022-12-20T17:00:36Z) - GoSum: Extractive Summarization of Long Documents by Reinforcement
Learning and Graph Organized discourse state [6.4805900740861]
We propose GoSum, a reinforcement-learning-based extractive model for long-paper summarization.
GoSum encodes states by building a heterogeneous graph from different discourse levels for each input document.
We evaluate the model on two datasets of scientific articles summarization: PubMed and arXiv.
arXiv Detail & Related papers (2022-11-18T14:07:29Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
We propose the first unsupervised multi-granularity summarization framework, GranuSum.
By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner.
arXiv Detail & Related papers (2022-01-29T05:56:35Z) - Summ^N: A Multi-Stage Summarization Framework for Long Input Dialogues
and Documents [13.755637074366813]
SummN is a simple, flexible, and effective multi-stage framework for input texts longer than the maximum context lengths of typical pretrained LMs.
It can process input text of arbitrary length by adjusting the number of stages while keeping the LM context size fixed.
Our experiments demonstrate that SummN significantly outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2021-10-16T06:19:54Z) - Bringing Structure into Summaries: a Faceted Summarization Dataset for
Long Scientific Documents [30.09742243490895]
FacetSum is a faceted summarization benchmark built on Emerald journal articles.
Analyses and empirical results on our dataset reveal the importance of bringing structure into summaries.
We believe FacetSum will spur further advances in summarization research and foster the development of NLP systems.
arXiv Detail & Related papers (2021-05-31T22:58:38Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
Text summarization is the research area aiming at creating a short and condensed version of the original document.
In real-world applications, most of the data is not in a plain text format.
This paper focuses on the survey of these new summarization tasks and approaches in the real-world application.
arXiv Detail & Related papers (2020-05-10T14:59:36Z) - A Divide-and-Conquer Approach to the Summarization of Long Documents [4.863209463405628]
We present a novel divide-and-conquer method for the neural summarization of long documents.
Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into smaller summarization problems.
We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance.
arXiv Detail & Related papers (2020-04-13T20:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.