論文の概要: Interpretation of Neural Networks is Susceptible to Universal Adversarial Perturbations
- arxiv url: http://arxiv.org/abs/2212.03095v2
- Date: Sun, 21 Apr 2024 00:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 01:41:46.223182
- Title: Interpretation of Neural Networks is Susceptible to Universal Adversarial Perturbations
- Title(参考訳): ニューラルネットワークの解釈は普遍的対向摂動の影響を受けやすい
- Authors: Haniyeh Ehsani Oskouie, Farzan Farnia,
- Abstract要約: 本稿では,標準画像データセットにUniversal Perturbation for Interpretation (UPI)が存在することを示す。
本稿では、ニューラルネットワークの勾配に基づく解釈を異なるサンプルで効果的に変更可能な、主成分分析(PCA)に基づくUPI計算手法を提案する。
- 参考スコア(独自算出の注目度): 9.054540533394926
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Interpreting neural network classifiers using gradient-based saliency maps has been extensively studied in the deep learning literature. While the existing algorithms manage to achieve satisfactory performance in application to standard image recognition datasets, recent works demonstrate the vulnerability of widely-used gradient-based interpretation schemes to norm-bounded perturbations adversarially designed for every individual input sample. However, such adversarial perturbations are commonly designed using the knowledge of an input sample, and hence perform sub-optimally in application to an unknown or constantly changing data point. In this paper, we show the existence of a Universal Perturbation for Interpretation (UPI) for standard image datasets, which can alter a gradient-based feature map of neural networks over a significant fraction of test samples. To design such a UPI, we propose a gradient-based optimization method as well as a principal component analysis (PCA)-based approach to compute a UPI which can effectively alter a neural network's gradient-based interpretation on different samples. We support the proposed UPI approaches by presenting several numerical results of their successful applications to standard image datasets.
- Abstract(参考訳): 勾配に基づくサリエンシマップを用いたニューラルネットワーク分類器の解釈は、ディープラーニングの文献で広く研究されている。
既存のアルゴリズムは、標準画像認識データセットへの適用において満足な性能を実現しているが、最近の研究は、各入力サンプルに対して逆向きに設計されたノルム境界摂動に対する広く使われている勾配に基づく解釈スキームの脆弱性を実証している。
しかし、このような逆転摂動は、一般に入力サンプルの知識を用いて設計され、従って、未知または常に変化するデータポイントへの準最適適用を行う。
本稿では,標準画像データセットに対するUniversal Perturbation for Interpretation (UPI)の存在を示す。
このようなUPIを設計するために、ニューラルネットワークの勾配に基づく解釈を異なるサンプルで効果的に変更できる主成分分析(PCA)ベースのアプローチと同様に、勾配に基づく最適化手法を提案する。
提案手法は,標準的な画像データセットに応用されたいくつかの数値的な結果を提供することにより,提案手法をサポートする。
関連論文リスト
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
出力層の前に配置された特定のプロジェクション演算子を備えた多出力ディープニューラルネットワークで構成されている。
このようなアーキテクチャの設計は、LH-DNN(Lexicographic Hybrid Deep Neural Network)と呼ばれ、異なる研究分野と非常に離れた研究分野のツールを組み合わせることで実現されている。
アプローチの有効性を評価するために、階層的な分類タスクに適した畳み込みニューラルネットワークであるB-CNNと比較する。
論文 参考訳(メタデータ) (2024-09-25T14:12:50Z) - Structured Gradient-based Interpretations via Norm-Regularized Adversarial Training [18.876749156797935]
勾配に基づくサリエンシマップは、現実のコンピュータビジョンモデルへの応用において、空間性や接続性のような望ましい構造を欠いていることが多い。
勾配に基づく正則写像にスパーシティ構造を誘導するためのよく使われるアプローチは、スパーシフィケーションやノルムベースの正則化を用いて単純な勾配スキームを変更することである。
そこで本研究では,ニューラルネットワークを単純な勾配マップで学習するプロセス内スキームとして,逆トレーニングを適用することを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:49:36Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
特徴埋め込み空間のトポロジがベッチ数を介してよく訓練されたディープニューラルネットワーク(DNN)の層を通過するとき、どのように変化するかを検討する。
深度が増加するにつれて、トポロジカルに複雑なデータセットが単純なデータセットに変換され、ベッチ数はその最小値に達することが示される。
論文 参考訳(メタデータ) (2023-11-08T10:45:12Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
ソースドメインへのオーバーフィッティングは、ディープニューラルネットワークの勾配に基づくトレーニングにおいて一般的な問題である。
本稿では,ネットワークパラメータの勾配-信号-雑音比(GSNR)を選択することを提案する。
論文 参考訳(メタデータ) (2023-10-11T10:21:34Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Ordered Subgraph Aggregation Networks [19.18478955240166]
グラフ強化グラフニューラルネットワーク(GNN)が登場し、標準(メッセージパス)GNNの表現力を確実に向上させている。
本稿では, 理論的枠組みを導入し, サブグラフ強化GNNの表現性を拡張した。
部分グラフサイズの増加は常に表現力を高め、それらの制限をよりよく理解することを示します。
論文 参考訳(メタデータ) (2022-06-22T15:19:34Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。