論文の概要: A Comprehensively Improved Hybrid Algorithm for Learning Bayesian
Networks: Multiple Compound Memory Erasing
- arxiv url: http://arxiv.org/abs/2212.03103v1
- Date: Mon, 5 Dec 2022 12:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 15:56:27.158575
- Title: A Comprehensively Improved Hybrid Algorithm for Learning Bayesian
Networks: Multiple Compound Memory Erasing
- Title(参考訳): ベイズネットワーク学習のための包括的改良型ハイブリッドアルゴリズム:多重複合記憶消去
- Authors: Baokui Mou
- Abstract要約: 本稿では、新しいハイブリッドアルゴリズムMCME(multiple compound memory erasing)を提案する。
MCMEは、最初の2つの手法の利点を維持し、上記のCIテストの欠点を解消し、方向判別段階におけるスコアリング機能に革新をもたらす。
多くの実験により、MCMEは既存のアルゴリズムよりも優れた、あるいは類似した性能を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using a Bayesian network to analyze the causal relationship between nodes is
a hot spot. The existing network learning algorithms are mainly
constraint-based and score-based network generation methods. The
constraint-based method is mainly the application of conditional independence
(CI) tests, but the inaccuracy of CI tests in the case of high dimensionality
and small samples has always been a problem for the constraint-based method.
The score-based method uses the scoring function and search strategy to find
the optimal candidate network structure, but the search space increases too
much with the increase of the number of nodes, and the learning efficiency is
very low. This paper presents a new hybrid algorithm, MCME (multiple compound
memory erasing). This method retains the advantages of the first two methods,
solves the shortcomings of the above CI tests, and makes innovations in the
scoring function in the direction discrimination stage. A large number of
experiments show that MCME has better or similar performance than some existing
algorithms.
- Abstract(参考訳): ベイズネットワークを用いてノード間の因果関係を分析することはホットスポットである。
既存のネットワーク学習アルゴリズムは主に制約ベースおよびスコアベースネットワーク生成手法である。
制約に基づく手法は主に条件独立テスト(CI)の適用であるが、高次元および小サンプルの場合のCIテストの不正確さは、常に制約に基づく手法の課題である。
スコアベースの手法では,最適候補ネットワーク構造を見つけるためにスコア関数と探索戦略を用いるが,探索空間はノード数の増加とともに増大し,学習効率は非常に低い。
本稿では,新しいハイブリッドアルゴリズムであるmcme(multiple compound memory erasing)を提案する。
この方法は、最初の2つの手法の利点を保持し、上記のCIテストの欠点を解消し、方向判別段階におけるスコアリング機能に革新をもたらす。
多くの実験により、MCMEは既存のアルゴリズムよりも優れているか類似した性能を示している。
関連論文リスト
- Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
分散連合学習(DFL)は、様々なアプリケーションにまたがる実用性によって人気を博している。
集中型バージョンと比較して、DFLの多数のノード間で共有モデルをトレーニングするのはより難しい。
我々は,iADM (iexact alternating direction method) の枠組みに基づく新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-08-31T12:22:40Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
クリティカルノード問題(CNP)は、削除が残余ネットワークのペア接続性を最大に低下させるネットワークから臨界ノードの集合を見つけることを目的としている。
本研究は,ノード表現のための特徴重要度対応グラフアテンションネットワークを提案する。
ダブルディープQネットワークと組み合わせて、初めてCNPを解くエンドツーエンドのアルゴリズムを作成する。
論文 参考訳(メタデータ) (2021-12-03T14:23:05Z) - A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data [0.40611352512781856]
本稿では,高次元離散データから疎構造ベイズネットワークを学習する問題に対処する。
本稿では,空間特性とDAG特性を同時に満足するスコア関数を提案する。
具体的には,アルゴリズムを高次元データで効率的に動作させるため,最適化アルゴリズムに分散低減法を用いる。
論文 参考訳(メタデータ) (2021-08-21T12:21:01Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
歩行者検出と識別サブタスクを1つのネットワークで処理するワンステップ方式を開発しました。
現在のワンステップアプローチには2つの大きな課題があります。
本稿では,これらの問題を解決するために,分離メモリ強化ネットワーク(DMRNet)を提案する。
論文 参考訳(メタデータ) (2021-02-22T06:19:45Z) - A bi-level encoding scheme for the clustered shortest-path tree problem
in multifactorial optimization [1.471992435706872]
CluSPT(Clustered Shortest-Path Tree Problem)は、実生活における様々な最適化問題において重要な役割を果たしている。
近年、CluSPTを扱うためにMFEA(Multifactorial Evolutionary Algorithm)が導入されている。
本稿では,MFEAに基づくCluSPTの解法について述べる。
論文 参考訳(メタデータ) (2021-02-12T13:36:07Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Hyperspectral Unmixing Network Inspired by Unfolding an Optimization
Problem [2.4016406737205753]
ハイパースペクトル画像(HSI)アンミックスタスクは本質的に逆問題であり、最適化アルゴリズムによってよく解決される。
本稿では,U-ADMM-AENetとU-ADMM-BUNetという2つの新しいネットワークアーキテクチャを提案する。
本研究は,機械学習の文献において,展開された構造が対応する解釈を見つけることを示し,提案手法の有効性をさらに示すものである。
論文 参考訳(メタデータ) (2020-05-21T18:49:45Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。