ADIR: Adaptive Diffusion for Image Reconstruction
- URL: http://arxiv.org/abs/2212.03221v1
- Date: Tue, 6 Dec 2022 18:39:58 GMT
- Title: ADIR: Adaptive Diffusion for Image Reconstruction
- Authors: Shady Abu-Hussein, Tom Tirer, and Raja Giryes
- Abstract summary: We propose a conditional sampling scheme that exploits the prior learned by diffusion models.
We then combine it with a novel approach for adapting pretrained diffusion denoising networks to their input.
We show that our proposed adaptive diffusion for image reconstruction' approach achieves a significant improvement in the super-resolution, deblurring, and text-based editing tasks.
- Score: 46.838084286784195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, denoising diffusion models have demonstrated outstanding
image generation performance. The information on natural images captured by
these models is useful for many image reconstruction applications, where the
task is to restore a clean image from its degraded observations. In this work,
we propose a conditional sampling scheme that exploits the prior learned by
diffusion models while retaining agreement with the observations. We then
combine it with a novel approach for adapting pretrained diffusion denoising
networks to their input. We examine two adaption strategies: the first uses
only the degraded image, while the second, which we advocate, is performed
using images that are ``nearest neighbors'' of the degraded image, retrieved
from a diverse dataset using an off-the-shelf visual-language model. To
evaluate our method, we test it on two state-of-the-art publicly available
diffusion models, Stable Diffusion and Guided Diffusion. We show that our
proposed `adaptive diffusion for image reconstruction' (ADIR) approach achieves
a significant improvement in the super-resolution, deblurring, and text-based
editing tasks.
Related papers
- Blind Image Restoration via Fast Diffusion Inversion [17.139433082780037]
Blind Image Restoration via fast Diffusion (BIRD) is a blind IR method that jointly optimize for the degradation model parameters and the restored image.
A key idea in our method is not to modify the reverse sampling, i.e., not to alter all the intermediate latents, once an initial noise is sampled.
We experimentally validate BIRD on several image restoration tasks and show that it achieves state of the art performance on all of them.
arXiv Detail & Related papers (2024-05-29T23:38:12Z) - DiffHarmony: Latent Diffusion Model Meets Image Harmonization [11.500358677234939]
Diffusion models have promoted the rapid development of image-to-image translation tasks.
Fine-tuning pre-trained latent diffusion models from scratch is computationally intensive.
In this paper, we adapt a pre-trained latent diffusion model to the image harmonization task to generate harmonious but potentially blurry initial images.
arXiv Detail & Related papers (2024-04-09T09:05:23Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Denoising Autoregressive Representation Learning [13.185567468951628]
Our method, DARL, employs a decoder-only Transformer to predict image patches autoregressively.
We show that the learned representation can be improved by using tailored noise schedules and longer training in larger models.
arXiv Detail & Related papers (2024-03-08T10:19:00Z) - Improving Diffusion-Based Image Synthesis with Context Prediction [49.186366441954846]
Existing diffusion models mainly try to reconstruct input image from a corrupted one with a pixel-wise or feature-wise constraint along spatial axes.
We propose ConPreDiff to improve diffusion-based image synthesis with context prediction.
Our ConPreDiff consistently outperforms previous methods and achieves a new SOTA text-to-image generation results on MS-COCO, with a zero-shot FID score of 6.21.
arXiv Detail & Related papers (2024-01-04T01:10:56Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.