Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction
- URL: http://arxiv.org/abs/2308.14409v2
- Date: Thu, 17 Oct 2024 08:25:06 GMT
- Title: Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction
- Authors: Riccardo Barbano, Alexander Denker, Hyungjin Chung, Tae Hoon Roh, Simon Arridge, Peter Maass, Bangti Jin, Jong Chul Ye,
- Abstract summary: We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
- Score: 75.91471250967703
- License:
- Abstract: Denoising diffusion models have emerged as the go-to generative framework for solving inverse problems in imaging. A critical concern regarding these models is their performance on out-of-distribution tasks, which remains an under-explored challenge. Using a diffusion model on an out-of-distribution dataset, realistic reconstructions can be generated, but with hallucinating image features that are uniquely present in the training dataset. To address this discrepancy during train-test time and improve reconstruction accuracy, we introduce a novel sampling framework called Steerable Conditional Diffusion. Specifically, this framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement. Utilising our proposed method, we achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities, advancing the robust deployment of denoising diffusion models in real-world applications.
Related papers
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
We propose a principled expectation-maximization (EM) framework that iteratively learns diffusion models from noisy data with arbitrary corruption types.
Our framework employs a plug-and-play Monte Carlo method to accurately estimate clean images from noisy measurements, followed by training the diffusion model using the reconstructed images.
arXiv Detail & Related papers (2024-10-15T03:54:59Z) - Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
In this work we formulate the removal of quantization error as a denoising task, using diffusion to recover lost information in the transmitted image latent.
Our approach allows us to perform less than 10% of the full diffusion generative process and requires no architectural changes to the diffusion model.
arXiv Detail & Related papers (2024-04-12T16:23:42Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - A Recycling Training Strategy for Medical Image Segmentation with
Diffusion Denoising Models [8.649603931882227]
Denoising diffusion models have found applications in image segmentation by generating segmented masks conditioned on images.
In this work, we focus on improving the training strategy and propose a novel recycling method.
We show that, under a fair comparison with the same network architectures and computing budget, the proposed recycling-based diffusion models achieved on-par performance with non-diffusion-based supervised training.
arXiv Detail & Related papers (2023-08-30T23:03:49Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - ADIR: Adaptive Diffusion for Image Reconstruction [46.838084286784195]
We propose a conditional sampling scheme that exploits the prior learned by diffusion models.
We then combine it with a novel approach for adapting pretrained diffusion denoising networks to their input.
We show that our proposed adaptive diffusion for image reconstruction' approach achieves a significant improvement in the super-resolution, deblurring, and text-based editing tasks.
arXiv Detail & Related papers (2022-12-06T18:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.