ISAACS: Iterative Soft Adversarial Actor-Critic for Safety
- URL: http://arxiv.org/abs/2212.03228v3
- Date: Fri, 7 Jun 2024 18:05:35 GMT
- Title: ISAACS: Iterative Soft Adversarial Actor-Critic for Safety
- Authors: Kai-Chieh Hsu, Duy Phuong Nguyen, Jaime Fernández Fisac,
- Abstract summary: This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems.
A safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error.
While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The deployment of robots in uncontrolled environments requires them to operate robustly under previously unseen scenarios, like irregular terrain and wind conditions. Unfortunately, while rigorous safety frameworks from robust optimal control theory scale poorly to high-dimensional nonlinear dynamics, control policies computed by more tractable "deep" methods lack guarantees and tend to exhibit little robustness to uncertain operating conditions. This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems with general nonlinear dynamics subject to bounded modeling error by combining game-theoretic safety analysis with adversarial reinforcement learning in simulation. Following a soft actor-critic scheme, a safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error and training-to-deployment discrepancy allowed by the designer's uncertainty. While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter (or shield) with robust safety guarantees based on forward reachability rollouts. This shield can be used in conjunction with a safety-agnostic control policy, precluding any task-driven actions that could result in loss of safety. We evaluate our learning-based safety approach in a 5D race car simulator, compare the learned safety policy to the numerically obtained optimal solution, and empirically validate the robust safety guarantee of our proposed safety shield against worst-case model discrepancy.
Related papers
- Modular Control Architecture for Safe Marine Navigation: Reinforcement Learning and Predictive Safety Filters [0.0]
Reinforcement learning is increasingly used to adapt to complex scenarios, but standard frameworks ensuring safety and stability are lacking.
Predictive Safety Filters (PSF) offer a promising solution, ensuring constraint satisfaction in learning-based control without explicit constraint handling.
We apply this approach to marine navigation, combining RL with PSF on a simulated Cybership II model.
Results demonstrate the PSF's effectiveness in maintaining safety without hindering the RL agent's learning rate and performance, evaluated against a standard RL agent without PSF.
arXiv Detail & Related papers (2023-12-04T12:37:54Z) - Safe Deep Policy Adaptation [7.2747306035142225]
Policy adaptation based on reinforcement learning (RL) offers versatility and generalizability but presents safety and robustness challenges.
We propose SafeDPA, a novel RL and control framework that simultaneously tackles the problems of policy adaptation and safe reinforcement learning.
We provide theoretical safety guarantees of SafeDPA and show the robustness of SafeDPA against learning errors and extra perturbations.
arXiv Detail & Related papers (2023-10-08T00:32:59Z) - Searching for Optimal Runtime Assurance via Reachability and
Reinforcement Learning [2.422636931175853]
runtime assurance system (RTA) for a given plant enables the exercise of an untrusted or experimental controller while assuring safety with a backup controller.
Existing RTA design strategies are well-known to be overly conservative and, in principle, can lead to safety violations.
In this paper, we formulate the optimal RTA design problem and present a new approach for solving it.
arXiv Detail & Related papers (2023-10-06T14:45:57Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - ProBF: Learning Probabilistic Safety Certificates with Barrier Functions [31.203344483485843]
The control barrier function is a useful tool to guarantee safety if we have access to the ground-truth system dynamics.
In practice, we have inaccurate knowledge of the system dynamics, which can lead to unsafe behaviors.
We show the efficacy of this method through experiments on Segway and Quadrotor simulations.
arXiv Detail & Related papers (2021-12-22T20:18:18Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.