論文の概要: From Knowledge Augmentation to Multi-tasking: Towards Human-like
Dialogue Systems
- arxiv url: http://arxiv.org/abs/2212.03279v1
- Date: Mon, 14 Nov 2022 17:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 12:59:41.993087
- Title: From Knowledge Augmentation to Multi-tasking: Towards Human-like
Dialogue Systems
- Title(参考訳): 知識強化からマルチタスクへ--ヒューマンライクな対話システムへ
- Authors: Tianji Yang
- Abstract要約: 人間と会話できる対話エージェントを構築するという目標は、研究者の長年の夢だった。
本稿では,人工会話エージェントと人間レベルのインターロケータのギャップを示唆する多くの問題に対処する手法に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of building dialogue agents that can converse with humans naturally
has been a long-standing dream of researchers since the early days of
artificial intelligence. The well-known Turing Test proposed to judge the
ultimate validity of an artificial intelligence agent on the
indistinguishability of its dialogues from humans'. It should come as no
surprise that human-level dialogue systems are very challenging to build. But,
while early effort on rule-based systems found limited success, the emergence
of deep learning enabled great advance on this topic.
In this thesis, we focus on methods that address the numerous issues that
have been imposing the gap between artificial conversational agents and
human-level interlocutors. These methods were proposed and experimented with in
ways that were inspired by general state-of-the-art AI methodologies. But they
also targeted the characteristics that dialogue systems possess.
- Abstract(参考訳): 人間と会話できる対話エージェントを構築するという目標は、人工知能の初期から研究者の長年の夢だった。
有名なチューリングテストは、人工知能エージェントの究極の妥当性を、その対話と人間の対話の区別不能性について判断するために提案された。
人間レベルの対話システムが構築に非常に困難であることは驚くにあたらない。
しかし、ルールベースのシステムに対する初期の取り組みは、成功は限られていたが、ディープラーニングの出現は、このトピックに大きな進歩をもたらした。
本稿では,人工会話エージェントと人間レベルの対話者との間のギャップを埋める多くの問題に対処する手法に注目した。
これらの手法は、一般的な最先端のAI方法論にインスパイアされた方法で提案され、実験された。
しかし、対話システムが持つ特性もターゲットとした。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Commonsense Reasoning for Conversational AI: A Survey of the State of
the Art [0.76146285961466]
論文では、関連するトレーニングデータセットをリストアップし、会話型AIにコモンセンスを含めるための主要なアプローチについて説明する。
本稿では,BlenderBot3とLaMDAの2つの最先端オープンダイアログモデルの限られたコモンセンス能力について予備観測を行った。
論文 参考訳(メタデータ) (2023-02-15T19:55:57Z) - Enabling Harmonious Human-Machine Interaction with Visual-Context
Augmented Dialogue System: A Review [40.49926141538684]
Visual Context Augmented Dialogue System (VAD) は、マルチモーダル情報を知覚し理解することで人間とコミュニケーションする能力を持つ。
VADは、エンゲージメントとコンテキスト対応の応答を生成する可能性を秘めている。
論文 参考訳(メタデータ) (2022-07-02T09:31:37Z) - Converse -- A Tree-Based Modular Task-Oriented Dialogue System [99.78110192324843]
Converseは柔軟なツリーベースのモジュラータスク指向対話システムである。
Converseは、他のオープンソースの対話フレームワークと比較してユニークな機能である、タスク依存とタスク切り替えをサポートしている。
論文 参考訳(メタデータ) (2022-03-23T04:19:05Z) - A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots [0.0]
人工知能をデプロイして、人間と会話できる自動対話エージェントを構築することを目指している。
本稿では,長年にわたって対話システムを構築するために開発された手法について概説する。
論文 参考訳(メタデータ) (2021-11-02T08:07:55Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z) - Teaching Machines to Converse [24.64148203917298]
この論文は、オープンドメイン対話生成システムにおけるニューラルネットワークモデルによる課題に対処しようとするものである。
我々は,対話型質問応答システムを開発するために,対話型質問応答システムを開発した。
論文 参考訳(メタデータ) (2020-01-31T08:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。