論文の概要: Edge Impulse: An MLOps Platform for Tiny Machine Learning
- arxiv url: http://arxiv.org/abs/2212.03332v1
- Date: Wed, 2 Nov 2022 19:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 16:18:34.820827
- Title: Edge Impulse: An MLOps Platform for Tiny Machine Learning
- Title(参考訳): edge impulse: 小さな機械学習のためのmlopsプラットフォーム
- Authors: Shawn Hymel, Colby Banbury, Daniel Situnayake, Alex Elium, Carl Ward,
Mat Kelcey, Mathijs Baaijens, Mateusz Majchrzycki, Jenny Plunkett, David
Tischler, Alessandro Grande, Louis Moreau, Dmitry Maslov, Artie Beavis, Jan
Jongboom, Vijay Janapa Reddi
- Abstract要約: Edge Impulseは、TinyMLシステムを大規模に開発するための実用的なMLOpsプラットフォームである。
TinyMLは、断片化されたソフトウェアスタックと異質なデプロイメントハードウェアに悩まされている。
2022年10月現在、Edge Impulseは50,953人の開発者から118,185のプロジェクトをホストしている。
- 参考スコア(独自算出の注目度): 41.93900614159169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Edge Impulse is a cloud-based machine learning operations (MLOps) platform
for developing embedded and edge ML (TinyML) systems that can be deployed to a
wide range of hardware targets. Current TinyML workflows are plagued by
fragmented software stacks and heterogeneous deployment hardware, making ML
model optimizations difficult and unportable. We present Edge Impulse, a
practical MLOps platform for developing TinyML systems at scale. Edge Impulse
addresses these challenges and streamlines the TinyML design cycle by
supporting various software and hardware optimizations to create an extensible
and portable software stack for a multitude of embedded systems. As of Oct.
2022, Edge Impulse hosts 118,185 projects from 50,953 developers.
- Abstract(参考訳): Edge Impulseは、さまざまなハードウェアターゲットにデプロイ可能な組み込みおよびエッジML(TinyML)システムを開発するための、クラウドベースの機械学習操作(MLOps)プラットフォームである。
現在のTinyMLワークフローは、断片化されたソフトウェアスタックと異種デプロイメントハードウェアに悩まされており、MLモデルの最適化が難しく、利用できない。
我々は,smallmlシステムを大規模に開発するための実用的なmlopsプラットフォームであるedge impulseを提案する。
Edge Impulseはこれらの課題に対処し、TinyMLの設計サイクルを合理化し、様々なソフトウェアとハードウェアの最適化をサポートし、様々な組み込みシステムのための拡張可能でポータブルなソフトウェアスタックを作成する。
2022年10月現在、Edge Impulseは50,953人の開発者から118,185のプロジェクトをホストしている。
関連論文リスト
- Sketch: A Toolkit for Streamlining LLM Operations [51.33202045501429]
大規模言語モデル(LLM)は大きな成功を収めた。
アウトプットフォーマットの柔軟性は、モデルのアウトプットを制御および活用する上での課題を引き起こします。
スケッチ(Sketch)は、多種多様な分野にわたるLCM操作を合理化するための革新的なツールキットである。
論文 参考訳(メタデータ) (2024-09-05T08:45:44Z) - Dense Connector for MLLMs [89.50595155217108]
Dense Connector - 既存のMLLMを大幅に強化するプラグイン・アンド・プレイ型ヴィジュアル言語コネクタ。
この上に構築されたEfficient Dense Connectorは,視覚トークンの25%に過ぎず,LLaVA-v1.5に匹敵するパフォーマンスを実現する。
画像のみを訓練したわれわれのモデルは、ビデオ理解でも際立ったゼロショットの能力を誇示している。
論文 参考訳(メタデータ) (2024-05-22T16:25:03Z) - Emerging Platforms Meet Emerging LLMs: A Year-Long Journey of Top-Down Development [20.873143073842705]
TapMLは、さまざまなプラットフォームへの機械学習システムのデプロイを合理化するために設計された、トップダウンのアプローチとツーリングである。
従来のボトムアップメソッドとは異なり、TapMLはユニットテストを自動化し、徐々にモデルの計算をオフロードするためのマイグレーションベースの戦略を採用する。
TapMLは1年間にわたる現実世界の取り組みを通じて開発され、重要な新興モデルやプラットフォームをデプロイすることに成功しました。
論文 参考訳(メタデータ) (2024-04-14T06:09:35Z) - MAMMOTH: Massively Multilingual Modular Open Translation @ Helsinki [46.62437145754009]
MAMMOTHツールキットは,大規模な多言語モジュール型機械翻訳システムを大規模に学習するためのフレームワークである。
A100およびV100 NVIDIA GPUのクラスタ間で効率を実証し、設計哲学と今後の情報計画について議論する。
論文 参考訳(メタデータ) (2024-03-12T11:32:30Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
大規模言語モデル(LLM)は、多くのNLPタスクで有用であり、サイズが向上する。
これらのモデルはハイエンドのハードウェアを必要とするため、ほとんどの研究者にはアクセスできない。
本研究では,システムスループットの最大化のためにデバイスを自動的に割り当てるフォールトトレラント推論アルゴリズムとロードバランシングプロトコルを開発する。
論文 参考訳(メタデータ) (2023-12-13T18:52:49Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
本稿では,Semantic Low-Code Engineering for ML Applications (SeLoC-ML) というフレームワークを提案する。
SeLoC-MLは、非専門家が大規模なMLモデルやデバイスをモデル化し、発見し、再利用することを可能にする。
開発者は、レシピと呼ばれるセマンティックなアプリケーションテンプレートから、エンドユーザアプリケーションのプロトタイプを高速に作成できる。
論文 参考訳(メタデータ) (2022-07-18T13:06:21Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
機械学習(ML)は、コンピュータシステムにまたがる普及したツールとなっている。
ティニー・ロボット・ラーニング(Tiny Robot Learning)とは、リソースに制約された低コストの自律ロボットにMLを配置する手法である。
小型ロボット学習は、サイズ、重量、面積、パワー(SWAP)の制約によって困難にさらされる。
本稿では,小型ロボットの学習空間を簡潔に調査し,重要な課題を詳述し,MLシステム設計における将来的な仕事の機会を提案する。
論文 参考訳(メタデータ) (2022-05-11T19:36:15Z) - TinyML Platforms Benchmarking [0.0]
機械学習(ML)のための超低消費電力組み込みデバイス(Ultra-low Power embedded device)の最近の進歩は、新しい種類の製品を可能にしている。
TinyMLは、低消費電力の組み込みデバイス上でエッジでデータを集約して分析することで、ユニークなソリューションを提供する。
MLモデルのデプロイを容易にするため、さまざまなプラットフォーム向けに多くのTinyMLフレームワークが開発されている。
論文 参考訳(メタデータ) (2021-11-30T15:26:26Z) - TinyML for Ubiquitous Edge AI [0.0]
TinyMLは、極低電力域(mW範囲以下)で動作する組み込み(マイクロコントローラ駆動)デバイス上でのディープラーニングアルゴリズムの実現に重点を置いている。
TinyMLは、電力効率が高く、コンパクトなディープニューラルネットワークモデル、ソフトウェアフレームワークのサポート、組み込みハードウェアの設計における課題に対処する。
本報告では,この分野の拡大を導く主要な課題と技術的実現要因について論じる。
論文 参考訳(メタデータ) (2021-02-02T02:04:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。