論文の概要: KATSum: Knowledge-aware Abstractive Text Summarization
- arxiv url: http://arxiv.org/abs/2212.03371v1
- Date: Tue, 6 Dec 2022 23:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 15:06:07.833465
- Title: KATSum: Knowledge-aware Abstractive Text Summarization
- Title(参考訳): KATSum:知識を意識した抽象テキスト要約
- Authors: Guan Wang, Weihua Li, Edmund Lai, Jianhua Jiang
- Abstract要約: 本稿では、知識グラフがもたらす利点を活用して、標準的なSeq2Seqモデルを強化する、知識対応抽象テキスト要約と呼ばれる新しいモデルを提案する。
それに加えて、Knowledge Graph三つ子をソーステキストから抽出し、キーワードに関係情報を提供し、一貫性と事実的にエラーのない要約を生成する。
その結果,提案フレームワークは知識グラフからの情報を効果的に活用し,要約における事実的誤りを著しく低減できることがわかった。
- 参考スコア(独自算出の注目度): 7.210851256475742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text Summarization is recognised as one of the NLP downstream tasks and it
has been extensively investigated in recent years. It can assist people with
perceiving the information rapidly from the Internet, including news articles,
social posts, videos, etc. Most existing research works attempt to develop
summarization models to produce a better output. However, advent limitations of
most existing models emerge, including unfaithfulness and factual errors. In
this paper, we propose a novel model, named as Knowledge-aware Abstractive Text
Summarization, which leverages the advantages offered by Knowledge Graph to
enhance the standard Seq2Seq model. On top of that, the Knowledge Graph
triplets are extracted from the source text and utilised to provide keywords
with relational information, producing coherent and factually errorless
summaries. We conduct extensive experiments by using real-world data sets. The
results reveal that the proposed framework can effectively utilise the
information from Knowledge Graph and significantly reduce the factual errors in
the summary.
- Abstract(参考訳): テキスト要約はNLP下流タスクの一つとして認識されており,近年広く研究されている。
ニュース記事やソーシャル記事、ビデオなど、インターネットから情報を素早く知覚する人を助けることができる。
既存の研究の多くは、より良い出力を生み出すために要約モデルの開発を試みている。
しかし、ほとんどの既存モデルの出現制限は、不誠実さや事実的誤りを含む出現する。
本稿では,標準seq2seqモデルの拡張にナレッジグラフが提供する利点を活用して,ナレッジアウェア抽象テキスト要約と呼ばれる新しいモデルを提案する。
それに加えて、Knowledge Graph三つ子をソーステキストから抽出し、キーワードに関係情報を提供し、一貫性と事実的にエラーのない要約を生成する。
実世界のデータセットを用いて広範な実験を行う。
その結果,提案フレームワークは知識グラフからの情報を有効に活用し,要約の事実的誤りを著しく低減できることがわかった。
関連論文リスト
- Improving Factuality of Abstractive Summarization via Contrastive Reward
Learning [77.07192378869776]
本稿では,報酬学習と実効性指標の最近の発展を取り入れた,シンプルだが効果的なコントラスト学習フレームワークを提案する。
実証的研究により,提案手法により,実測値のフィードバックから要約モデルを学習できることが実証された。
論文 参考訳(メタデータ) (2023-07-10T12:01:18Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - Topic Modeling Based Extractive Text Summarization [0.0]
本稿では,潜在トピックに基づいて内容をクラスタリングすることで,テキストを要約する新しい手法を提案する。
我々は、テキスト要約へのアプローチにおいて、より使用量が少なく挑戦的なWikiHowデータセットを活用している。
論文 参考訳(メタデータ) (2021-06-29T12:28:19Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
Seq2Seqフレームワークによって開発されたニューラルエンコーダデコーダモデルは、より抽象的な要約を生成するという目標を達成するために提案されている。
高いレベルでは、そのようなニューラルネットワークは、使用される単語やフレーズに制約を加えることなく、自由に要約を生成することができる。
しかし、神経モデルの抽象化能力は二重刃の剣である。
論文 参考訳(メタデータ) (2021-04-30T08:46:13Z) - Enhancing Extractive Text Summarization with Topic-Aware Graph Neural
Networks [21.379555672973975]
本稿では,グラフニューラルネットワーク(GNN)に基づく抽出要約モデルを提案する。
本モデルでは,文章選択のための文書レベルの特徴を提供する潜在トピックを発見するために,共同ニューラルトピックモデル(NTM)を統合している。
実験結果から,CNN/DMおよびNYTデータセットにおいて,本モデルがほぼ最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T09:30:04Z) - Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven
Cloze Reward [42.925345819778656]
本稿では,グラフ拡張と意味駆動型RewarDによる抽象要約のための新しいフレームワークであるASGARDを紹介する。
本稿では,2つのエンコーダ(シーケンシャル文書エンコーダ)とグラフ構造化エンコーダ(グラフ構造化エンコーダ)の利用を提案する。
その結果、我々のモデルは、New York TimesとCNN/Daily Mailのデータセットからの入力として、知識グラフのない変種よりもはるかに高いROUGEスコアを生成することがわかった。
論文 参考訳(メタデータ) (2020-05-03T18:23:06Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Enhancing Factual Consistency of Abstractive Summarization [57.67609672082137]
ファクトアウェアな要約モデル FASum を提案し,実情関係を抽出し,要約生成プロセスに統合する。
次に,既存のシステムから生成した要約から事実誤りを自動的に補正する事実補正モデルFCを設計する。
論文 参考訳(メタデータ) (2020-03-19T07:36:10Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。