論文の概要: Criteria for Classifying Forecasting Methods
- arxiv url: http://arxiv.org/abs/2212.03523v1
- Date: Wed, 7 Dec 2022 09:09:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 15:23:39.655475
- Title: Criteria for Classifying Forecasting Methods
- Title(参考訳): 予測方法の分類基準
- Authors: Tim Januschowski, Jan Gasthaus, Yuyang Wang, David Salinas, Valentin
Flunkert, Michael Bohlke-Schneider, Laurent Callot
- Abstract要約: 予測手法を「機械学習」あるいは「統計的」な性質のどちらかとして分類することが一般的である。
この区別は、どちらのクラスにも割り当てられたメソッドの根本的な違いに起因するものではないと我々は主張する。
予測手法の代替的特徴として,我々の見解では,有意義な結論を導き出すことができる。
- 参考スコア(独自算出の注目度): 21.430074536205403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifying forecasting methods as being either of a "machine learning" or
"statistical" nature has become commonplace in parts of the forecasting
literature and community, as exemplified by the M4 competition and the
conclusion drawn by the organizers. We argue that this distinction does not
stem from fundamental differences in the methods assigned to either class.
Instead, this distinction is probably of a tribal nature, which limits the
insights into the appropriateness and effectiveness of different forecasting
methods. We provide alternative characteristics of forecasting methods which,
in our view, allow to draw meaningful conclusions. Further, we discuss areas of
forecasting which could benefit most from cross-pollination between the ML and
the statistics communities.
- Abstract(参考訳): 予測手法を「機械学習」か「統計」のどちらかに分類することは、M4コンペティションや主催者による結論によって実証されるように、予測文学やコミュニティの一部において一般的となっている。
この区別は、どちらのクラスにも割り当てられたメソッドの根本的な違いに起因するものではない。
代わりに、この区別はおそらく部族的な性質であり、異なる予測方法の適切性と有効性についての洞察を制限する。
我々は,予測手法の代替的特徴を提示することで,有意義な結論を導き出すことができる。
さらに,MLと統計コミュニティの相互補間から最も恩恵を受ける可能性のある予測分野についても論じる。
関連論文リスト
- Invariant Probabilistic Prediction [45.90606906307022]
任意の分布シフトは、一般に不変かつ頑健な確率的予測を認めないことを示す。
Invariant probabilistic predictions called IPP, and study the consistency of the underlying parameters。
論文 参考訳(メタデータ) (2023-09-18T18:50:24Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
局所変換近傍における分類器の出力不変性の尺度を提案する。
私たちの測度は計算が簡単で、テストポイントの真のラベルに依存しません。
画像分類,感情分析,自然言語推論のベンチマーク実験において,我々の測定値と実際のOOD一般化との間に強い相関関係を示す。
論文 参考訳(メタデータ) (2022-07-05T14:55:16Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
1つの予測器が等しく機能するモデルのグループからアドホックに選択された場合、個人は害を受ける可能性があると我々は主張する。
これらの不公平性は実生活で容易に発見でき、技術的手段だけで緩和することは困難である可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-14T14:33:39Z) - A Prototype-Oriented Framework for Unsupervised Domain Adaptation [52.25537670028037]
メモリと計算効率のよい確率的フレームワークを提供し、クラスプロトタイプを抽出し、ターゲットとなる特徴をそれらと整合させる。
本稿では,単一ソース,マルチソース,クラス不均衡,ソースプライベートドメイン適応など,幅広いシナリオにおいて,本手法の汎用性を実証する。
論文 参考訳(メタデータ) (2021-10-22T19:23:22Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
因果推論に基づく因果意味生成モデル(CSG)を提案し,その2つの要因を別々にモデル化する。
CSGはトレーニングデータに適合させることで意味的因子を識別できることを示し、この意味的識別はOOD一般化誤差の有界性を保証する。
論文 参考訳(メタデータ) (2020-11-03T13:16:05Z) - Performance-Agnostic Fusion of Probabilistic Classifier Outputs [2.4206828137867107]
本稿では,1つのコンセンサスクラス予測を行うために,分類器の確率的出力を組み合わせる手法を提案する。
提案手法は,精度が性能指標である状況において有効である。
キャリブレーションされた確率を出力しないので、そのような確率がさらなる処理に必要となる状況には適さない。
論文 参考訳(メタデータ) (2020-09-01T16:53:29Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Hierarchical forecast reconciliation with machine learning [0.34998703934432673]
本稿では,機械学習に基づく新しい階層的予測手法を提案する。
これは、サンプル後の経験的予測精度とコヒーレンスの改善の目的を構造的に組み合わせている。
本研究では,提案手法が既存手法よりも優れた点予測を与えることを示す。
論文 参考訳(メタデータ) (2020-06-03T04:49:39Z) - Fairness Measures for Regression via Probabilistic Classification [0.0]
アルゴリズムフェアネス(英: Algorithmic Fairness)とは、機械学習アルゴリズムが最適化できる定量尺度として、公平性や合理的な扱いなどの概念を表現することである。
これは、分類公正度尺度が結果の比率を比較することで容易に計算され、同じ資格を持つ男性の割合が適格女性として選択されるような行動につながるためである。
しかし、そのような尺度は、価格や支払いの割当といった問題に対する継続的な回帰設定を一般化することは、計算的に困難である。
回帰設定では, 保護属性の異なる条件確率の比率として, 独立性, 分離性, 充足性基準の抽出可能な近似を導入する。
論文 参考訳(メタデータ) (2020-01-16T21:53:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。