論文の概要: Attribute Graph Clustering via Learnable Augmentation
- arxiv url: http://arxiv.org/abs/2212.03559v2
- Date: Thu, 28 Sep 2023 13:14:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 23:07:29.301985
- Title: Attribute Graph Clustering via Learnable Augmentation
- Title(参考訳): 学習可能な拡張による属性グラフクラスタリング
- Authors: Xihong Yang, Yue Liu, Ke Liang, Sihang Zhou, Xinwang Liu, En Zhu
- Abstract要約: 対照的なディープグラフクラスタリング(CDGC)は、異なるクラスタにノードをグループ化するために対照的な学習を利用する。
本稿では,高品質な増分サンプルのための学習可能な増分器を導入するための,Learningable Augmentation (textbfAGCLA) を用いた属性グラフクラスタリング手法を提案する。
- 参考スコア(独自算出の注目度): 71.36827095487294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive deep graph clustering (CDGC) utilizes contrastive learning to
group nodes into different clusters. Better augmentation techniques benefit the
quality of the contrastive samples, thus being one of key factors to improve
performance. However, the augmentation samples in existing methods are always
predefined by human experiences, and agnostic from the downstream task
clustering, thus leading to high human resource costs and poor performance. To
this end, we propose an Attribute Graph Clustering method via Learnable
Augmentation (\textbf{AGCLA}), which introduces learnable augmentors for
high-quality and suitable augmented samples for CDGC. Specifically, we design
two learnable augmentors for attribute and structure information, respectively.
Besides, two refinement matrices, including the high-confidence pseudo-label
matrix and the cross-view sample similarity matrix, are generated to improve
the reliability of the learned affinity matrix. During the training procedure,
we notice that there exist differences between the optimization goals for
training learnable augmentors and contrastive learning networks. In other
words, we should both guarantee the consistency of the embeddings as well as
the diversity of the augmented samples. Thus, an adversarial learning mechanism
is designed in our method. Moreover, a two-stage training strategy is leveraged
for the high-confidence refinement matrices. Extensive experimental results
demonstrate the effectiveness of AGCLA on six benchmark datasets.
- Abstract(参考訳): コントラストディープグラフクラスタリング(cdgc)は、異なるクラスタにノードをグループ化するのにコントラスト学習を利用する。
より優れた拡張技術は、対照的なサンプルの品質に役立つため、パフォーマンスを改善する重要な要因の1つとなる。
しかし,既存の手法の強化サンプルは常に人的経験によって事前に定義されており,下流のタスククラスタリングには依存せず,高い人的資源コストと性能の低下につながる。
そこで本研究では,CDGCのための高品質かつ適切な拡張サンプルのための学習可能な拡張器を導入する,Learningable Augmentation (\textbf{AGCLA})による属性グラフクラスタリング手法を提案する。
具体的には,属性情報と構造情報のための学習可能な拡張器を2つ設計する。
さらに、高信頼擬似ラベル行列とクロスビューサンプル類似度行列を含む2つの改良行列を生成し、学習親和性行列の信頼性を向上させる。
トレーニングの過程では,学習可能オーグメンタの学習目標と,コントラスト学習ネットワークとの間には相違点があることに気付く。
言い換えれば、埋め込みの一貫性と拡張されたサンプルの多様性を保証すべきである。
そこで本手法では,逆学習機構を設計する。
さらに,2段階の訓練戦略を高信頼化行列に活用する。
6つのベンチマークデータセットに対するAGCLAの有効性を示す大規模な実験結果が得られた。
関連論文リスト
- GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
グラフ表現学習は、ノードをベクトル表現にマッピングする際にグラフトポロジを保存する強力なツールとして登場した。
現在のグラフニューラルネットワークモデルは、広範なラベル付きデータを必要とするという課題に直面している。
多次元コントラスト学習によるグラフ表現埋め込みを提案する。
論文 参考訳(メタデータ) (2024-09-12T03:09:05Z) - Multi-Task Curriculum Graph Contrastive Learning with Clustering Entropy Guidance [25.5510013711661]
本稿ではクラスタリング誘導型Curriculum Graph contrastive Learning(CCGL)フレームワークを提案する。
CCGLは以下のグラフ拡張とコントラスト学習のガイダンスとしてクラスタリングエントロピーを使用している。
実験の結果,CCGLは最先端の競合に比べて優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-22T02:18:47Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
グラフニューラルクラスタリングネットワーク(GNN)は、グラフベースのレコメンデータシステムのための強力な学習手法である。
本稿では,単純なグラフコントラスト学習パラダイムであるLightGCLを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:16:21Z) - SMARTQUERY: An Active Learning Framework for Graph Neural Networks
through Hybrid Uncertainty Reduction [25.77052028238513]
本稿では,ハイブリッド不確実性低減関数を用いて,ラベル付きノードの少ないグラフニューラルネットワークを学習するフレームワークを提案する。
ごく少数のラベル付きデータを用いた最先端技術に対する本手法の競合性能を実証する。
論文 参考訳(メタデータ) (2022-12-02T20:49:38Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked Graph Autoencoder (MGAE) フレームワークは、グラフ構造データの効果的な学習を行う。
自己指導型学習から洞察を得て、私たちはランダムに大量のエッジを隠蔽し、トレーニング中に欠落したエッジを再構築しようとします。
論文 参考訳(メタデータ) (2022-01-07T16:48:07Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。