論文の概要: Tag Embedding and Well-defined Intermediate Representation improve
Auto-Formulation of Problem Description
- arxiv url: http://arxiv.org/abs/2212.03575v1
- Date: Wed, 7 Dec 2022 11:23:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 15:47:19.895784
- Title: Tag Embedding and Well-defined Intermediate Representation improve
Auto-Formulation of Problem Description
- Title(参考訳): タグ埋め込みとよく定義された中間表現は問題記述の自動生成を改善する
- Authors: Sanghwan Jang
- Abstract要約: 最適化問題を正規表現に変換するタスクである問題記述の自動定式化に対処する。
まず、中間表現を定義してオートフォーミュレーションタスクを単純化し、次に所定のエンティティタグ情報を利用するためにエンティティタグ埋め込みを導入します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this report, I address auto-formulation of problem description, the task
of converting an optimization problem into a canonical representation. I first
simplify the auto-formulation task by defining an intermediate representation,
then introduce entity tag embedding to utilize a given entity tag information.
The ablation study demonstrate the effectiveness of the proposed method, which
finally took second place in NeurIPS 2022 NL4Opt competition subtask 2.
- Abstract(参考訳): 本稿では,最適化問題を正規表現に変換する課題である問題記述の自動定式化について述べる。
まず、中間表現を定義してオートフォーミュレーションタスクを単純化し、次に所定のエンティティタグ情報を利用するためにエンティティタグ埋め込みを導入します。
アブレーション実験はNeurIPS 2022 NL4Opt competition subtask 2で2位となった提案手法の有効性を示した。
関連論文リスト
- Automating Reformulation of Essence Specifications via Graph Rewriting [0.47928510661698703]
本稿では,グラフ書き換えを用いて入力モデルを再構成し,自動的な性能向上を実現するシステムを提案する。
グラフプログラム2言語で表現された書き直し規則によってシステムを実装する。
本稿では,修正問題の解を元の問題の解に自動的に変換し,検証と提示を行う方法について述べる。
論文 参考訳(メタデータ) (2024-11-14T16:35:15Z) - Improving Subject-Driven Image Synthesis with Subject-Agnostic Guidance [62.15866177242207]
主観的条件を構築することにより、与えられた主観的条件と入力テキストプロンプトの両方に整合した出力が得られることを示す。
私たちのアプローチは概念的にはシンプルで、最小限のコード修正しか必要ありませんが、実質的な品質改善につながります。
論文 参考訳(メタデータ) (2024-05-02T15:03:41Z) - A Generative Approach for Wikipedia-Scale Visual Entity Recognition [56.55633052479446]
与えられたクエリ画像をWikipediaにある600万の既存エンティティの1つにマッピングするタスクに対処する。
本稿では,対象エンティティを識別する「意味的・識別的コード」の自動復号化を学習する,新しい生成エンティティ認識フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-03-04T13:47:30Z) - Incremental Image Labeling via Iterative Refinement [4.7590051176368915]
特に、意味ギャップ問題の存在は、画像から抽出した情報とその言語的記述との間に、多対多のマッピングをもたらす。
この避けられないバイアスにより、現在のコンピュータビジョンタスクのパフォーマンスはさらに低下する。
我々は、ラベリングプロセスを駆動するガイドラインを提供するために、知識表現(KR)ベースの方法論を導入する。
論文 参考訳(メタデータ) (2023-04-18T13:37:22Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
ネスト現象によるジレンマを解決するために,ASACと呼ばれる新しい手法を提案する。
提案手法は,適応共有(AS)部と注意条件付きランダムフィールド(ACRF)モジュールの2つの鍵モジュールを含む。
我々のモデルは、異なるカテゴリのエンティティ間の暗黙の区別と関係をキャプチャすることで、より良いエンティティ表現を学ぶことができる。
論文 参考訳(メタデータ) (2022-11-09T09:23:56Z) - Bi-Directional Iterative Prompt-Tuning for Event Argument Extraction [7.20903061029676]
イベント引数抽出(EAE)のための双方向反復的プロンプトチューニング手法を提案する。
提案手法は,コンテクストエンティティの引数ロールをプロンプト構成に導入することにより,イベント引数の相互作用を探索する。
ACE 2005 の英語データセットにおける標準および低リソース設定による実験により,提案手法がピア・オブ・ザ・アーティファクト法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2022-10-28T02:31:59Z) - Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation
and Instance Generation [36.541309948222306]
各エンティティタイプに対して,アノテーション付きエンティティ参照が付与される場合,FET(Fall-shot Fine-fine Entity Typing)の問題について検討する。
そこで本稿では,(1) エンティティ型ラベル解釈モジュールが,少数ショットインスタンスとラベル階層を併用することで,タイプラベルと語彙の関連付けを自動的に学習し,(2) 型ベースのコンテキスト化インスタンス生成器は,与えられたインスタンスに基づいて新しいインスタンスを生成して,より一般化のためにトレーニングセットを拡大する,という,2つのモジュールからなる新しいFETフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-28T04:05:40Z) - QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query
Attribute Value Extraction [57.56700153507383]
本稿では,QUEACOというEコマース検索におけるクエリ属性値の統一抽出システムを提案する。
NER フェーズでは、QUEACO は教師-学生ネットワークを採用し、強くラベル付けされたデータに基づいてトレーニングされた教師ネットワークが擬似ラベルを生成する。
AVN フェーズでは、弱いラベル付けされたクエリ・ツー・アトリビュート・ビヘイビア・データを利用して、クエリーから表層属性値の正規化を行い、製品から標準形式へと変換する。
論文 参考訳(メタデータ) (2021-08-19T03:24:23Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised Domain Adaptive (UDA) Person Re-identification (再ID) は、ターゲットドメインデータのラベルが欠落しているため、難しい作業です。
オフラインクラスタリングフェーズにおける擬似ラベルとオンライントレーニングフェーズにおける特徴を共同で改良する,デュアルリファインメントと呼ばれる新しいアプローチを提案する。
本手法は最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-12-26T07:35:35Z) - Joint Entity and Relation Canonicalization in Open Knowledge Graphs
using Variational Autoencoders [11.259587284318835]
オープンナレッジグラフの名詞句と関係句は正規化されず、冗長で曖昧な主語関係対象のトリプルが爆発する。
まず、名詞句と関係句の両方の埋め込み表現を生成し、次にクラスタリングアルゴリズムを使用して、埋め込みを機能としてグループ化します。
本研究では,組込みとクラスタ割り当ての両方をエンドツーエンドアプローチで学習する共同モデルであるCUVA(Canonicalizing Using Variational AutoEncoders)を提案する。
論文 参考訳(メタデータ) (2020-12-08T22:58:30Z) - AlignSeg: Feature-Aligned Segmentation Networks [109.94809725745499]
本稿では,機能集約プロセスにおける誤アライメント問題に対処するために,特徴適応型ネットワーク(AlignSeg)を提案する。
我々のネットワークは、それぞれ82.6%と45.95%という新しい最先端のmIoUスコアを達成している。
論文 参考訳(メタデータ) (2020-02-24T10:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。