Artificial Intelligence in Governance, Risk and Compliance: Results of a study on potentials for the application of artificial intelligence (AI) in governance, risk and compliance (GRC)
- URL: http://arxiv.org/abs/2212.03601v2
- Date: Wed, 8 May 2024 16:18:57 GMT
- Title: Artificial Intelligence in Governance, Risk and Compliance: Results of a study on potentials for the application of artificial intelligence (AI) in governance, risk and compliance (GRC)
- Authors: Eva Ponick, Gabriele Wieczorek,
- Abstract summary: GRC (Governance, Risk and Compliance) means an integrated governance-approach.
Governance functions are interlinked and not separated from each other.
Artificial intelligence is being used in GRC for processing and analysis of unstructured data sets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The digital transformation leads to fundamental change in organizational structures. To be able to apply new technologies not only selectively, processes in companies must be revised and functional units must be viewed holistically, especially with regard to interfaces. Target-oriented management decisions are made, among other things, on the basis of risk management and compliance in combination with the internal control system as governance functions. The effectiveness and efficiency of these functions is decisive to follow guidelines and regulatory requirements as well as for the evaluation of alternative options for acting with regard to activities of companies. GRC (Governance, Risk and Compliance) means an integrated governance-approach, in which the mentioned governance functions are interlinked and not separated from each other. Methods of artificial intelligence represents an important technology of digital transformation. This technology, which offers a broad range of methods such as machine learning, artificial neural networks, natural language processing or deep learning, offers a lot of possible applications in many business areas from purchasing to production or customer service. Artificial intelligence is also being used in GRC, for example for processing and analysis of unstructured data sets. This study contains the results of a survey conducted in 2021 to identify and analyze the potential applications of artificial intelligence in GRC.
Related papers
- Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Exploring the Relevance of Data Privacy-Enhancing Technologies for AI
Governance Use Cases [1.5293427903448022]
It is useful to view different AI governance objectives as a system of information flows.
The importance of interoperability between these different AI governance solutions becomes clear.
arXiv Detail & Related papers (2023-03-15T21:56:59Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
This study aims to identify the new requirements for developing AI-oriented artifacts to address talent management issues.
A design science method is adopted for conducting the experimental study with structured machine learning techniques.
arXiv Detail & Related papers (2022-07-25T10:42:50Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
Most AI approaches can only be represented as "black boxes" and suffer from the lack of transparency.
It is crucial not only to develop effective and robust AI systems, but to make sure their internal processes are explainable and fair.
arXiv Detail & Related papers (2021-12-01T16:03:06Z) - Towards Fairness Certification in Artificial Intelligence [31.920661197618195]
We propose a first joint effort to define the operational steps needed for AI fairness certification.
We will overview the criteria that should be met by an AI system before coming into official service and the conformity assessment procedures useful to monitor its functioning for fair decisions.
arXiv Detail & Related papers (2021-06-04T14:12:12Z) - Enterprise AI Canvas -- Integrating Artificial Intelligence into
Business [0.0]
The Enterprise AI canvas is designed to bring Data Scientist and business expert together to discuss and define all relevant aspects.
It consists of two parts where part one focuses on the business view and organizational aspects, whereas part two focuses on the underlying machine learning model and the data it uses.
arXiv Detail & Related papers (2020-09-18T07:30:56Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.