AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes
- URL: http://arxiv.org/abs/2008.12987v1
- Date: Sat, 29 Aug 2020 14:57:53 GMT
- Title: AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes
- Authors: Mohammadhossein Ghahramani, Yan Qiao, MengChu Zhou, Adrian OHagan, and
James Sweeney
- Abstract summary: We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
- Score: 56.65379135797867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart Manufacturing refers to optimization techniques that are implemented in
production operations by utilizing advanced analytics approaches. With the
widespread increase in deploying Industrial Internet of Things (IIoT) sensors
in manufacturing processes, there is a progressive need for optimal and
effective approaches to data management. Embracing Machine Learning and
Artificial Intelligence to take advantage of manufacturing data can lead to
efficient and intelligent automation. In this paper, we conduct a comprehensive
analysis based on Evolutionary Computing and Deep Learning algorithms toward
making semiconductor manufacturing smart. We propose a dynamic algorithm for
gaining useful insights about semiconductor manufacturing processes and to
address various challenges. We elaborate on the utilization of a Genetic
Algorithm and Neural Network to propose an intelligent feature selection
algorithm. Our objective is to provide an advanced solution for controlling
manufacturing processes and to gain perspective on various dimensions that
enable manufacturers to access effective predictive technologies.
Related papers
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives [40.62773366902451]
This paper advocates a specific viewpoint on the field of process mining.
We first summarize the framework of process mining, common industrial applications, and the latest advances combined with artificial intelligence.
This particular perspective aims to revolutionize process mining by leveraging artificial intelligence to offer sophisticated solutions for complex, multi-organizational data analysis.
arXiv Detail & Related papers (2024-07-15T23:30:34Z) - Informatics & dairy industry coalition: AI trends and present challenges [5.014059576916173]
This work comprehensively describes industrial challenges where AI can be exploited, focusing on the dairy industry.
The conclusions presented can help researchers apply novel approaches for cattle monitoring and farmers by proposing advanced technological solutions to their needs.
arXiv Detail & Related papers (2024-06-18T16:39:21Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Reinforced In-Context Black-Box Optimization [64.25546325063272]
RIBBO is a method to reinforce-learn a BBO algorithm from offline data in an end-to-end fashion.
RIBBO employs expressive sequence models to learn the optimization histories produced by multiple behavior algorithms and tasks.
Central to our method is to augment the optimization histories with textitregret-to-go tokens, which are designed to represent the performance of an algorithm based on cumulative regret over the future part of the histories.
arXiv Detail & Related papers (2024-02-27T11:32:14Z) - Machine learning for industrial sensing and control: A survey and
practical perspective [7.678648424345052]
We identify key statistical and machine learning techniques that have seen practical success in the process industries.
Soft sensing contains a wealth of industrial applications of statistical and machine learning methods.
We consider two distinct flavors for data-driven optimization and control: hybrid modeling in conjunction with mathematical programming techniques and reinforcement learning.
arXiv Detail & Related papers (2024-01-24T22:27:04Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Towards Explainable Artificial Intelligence in Banking and Financial
Services [0.0]
We study and analyze the recent work done in Explainable Artificial Intelligence (XAI) methods and tools.
We introduce a novel XAI process, which facilitates producing explainable models while maintaining a high level of learning performance.
We develop a digital dashboard to facilitate interacting with the algorithm results.
arXiv Detail & Related papers (2021-12-14T08:02:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.