Self-protected quantum simulation and quantum phase estimation in the
presence of classical noise
- URL: http://arxiv.org/abs/2212.03664v3
- Date: Wed, 29 Nov 2023 13:27:21 GMT
- Title: Self-protected quantum simulation and quantum phase estimation in the
presence of classical noise
- Authors: Lian-Ao Wu
- Abstract summary: We propose self-protected quantum simulations immune to a large class of classical noise.
For readout we generalize the conventional quantum phase estimation to its upgraded version in the presence of classical noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The decoherence phenomenon inevitably exists in quantum computing processes.
Consequently, dynamic suppression of decoherence for instance via dynamical
decoupling, quantum error correction codes (QECC) etc. is crucial in accurately
executing known or to-be-developed quantum algorithms. While this dynamic zero
noise strategy well fits into our expectations for the future of quantum
computing, given the status quo, we have launched self-protected quantum
algorithms for over 15 years based on the opposite living-with-noise strategy.
Here we propose self-protected quantum simulations immune to a large class of
classical noise. Accordingly, for readout we generalize the conventional
quantum phase estimation to its upgraded version in the presence of classical
noise.
Related papers
- An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics [2.891413712995642]
We introduce an efficient classical algorithm for simulating short-time dynamics in 2D quantum systems.
Our results reveal the inherent simplicity in the complexity of short-time 2D quantum dynamics.
This work advances our understanding of the boundary between classical and quantum computation.
arXiv Detail & Related papers (2024-09-06T09:59:12Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Hybrid quantum gap estimation algorithm using a filtered time series [0.0]
We prove that classical post-processing, i.e., long-time filtering of an offline time series, exponentially improves the circuit depth needed for quantum time evolution.
We apply the filtering method to the construction of a hybrid quantum-classical algorithm to estimate energy gap.
Our findings set the stage for unbiased quantum simulation to offer memory advantage in the near term.
arXiv Detail & Related papers (2022-12-28T18:59:59Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Efficient classical computation of expectation values in a class of
quantum circuits with an epistemically restricted phase space representation [0.0]
We devise a classical algorithm which efficiently computes the quantum expectation values arising in a class of continuous variable quantum circuits.
The classical computational algorithm exploits a specific restriction in classical phase space which directly captures the quantum uncertainty relation.
arXiv Detail & Related papers (2021-06-21T06:43:34Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.