Single-qubit loss-tolerant quantum position verification protocol secure
against entangled attackers
- URL: http://arxiv.org/abs/2212.03674v1
- Date: Wed, 7 Dec 2022 14:39:56 GMT
- Title: Single-qubit loss-tolerant quantum position verification protocol secure
against entangled attackers
- Authors: Lloren\c{c} Escol\`a-Farr\`as and Florian Speelman
- Abstract summary: We study the exact loss-tolerance of the most popular protocol for QPV, which is based on BB84 states.
We show how these results transfer to the variant protocol which combines $n$ bits of classical information with a single qubit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protocols for quantum position verification (QPV) which combine classical and
quantum information are insecure in the presence of loss. We study the exact
loss-tolerance of the most popular protocol for QPV, which is based on BB84
states, and generalizations of this protocol. By bounding the winning
probabilities of a variant of the monogamy-of-entanglement game using
semidefinite programming (SDP), we find tight bounds for the relation between
loss and error for these extended non-local games.
These new bounds enable the usage of QPV protocols using more-realistic
experimental parameters. We show how these results transfer to the variant
protocol which combines $n$ bits of classical information with a single qubit,
thereby exhibiting a protocol secure against a linear amount of entanglement
(in the classical information $n$) even in the presence of a moderate amount of
photon loss. Moreover, this protocol stays secure even if the photon encoding
the qubit travels arbitrarily slow in an optical fiber. We also extend this
analysis to the case of more than two bases, showing even stronger
loss-tolerance for that case.
Finally, since our semi-definite program bounds a monogamy-of-entanglement
game, we describe how they can also be applied to improve the analysis of
one-sided device-independent QKD protocols.
Related papers
- Device-independent quantum key distribution based on routed Bell tests [0.0]
We investigate DIQKD protocols based on a routed setup.
In these protocols, photons from the source are routed by an actively controlled switch to a nearby test device instead of the distant one.
We find that in an ideal case routed DIQKD protocols can significantly improve detection efficiency requirements, by up to $sim 30%$.
arXiv Detail & Related papers (2024-04-01T15:59:09Z) - Security of hybrid BB84 with heterodyne detection [0.0]
Quantum key distribution (QKD) promises everlasting security based on the laws of physics.
Recent hybrid QKD protocols have been introduced to leverage advantages from both categories.
We provide a rigorous security proof for a protocol introduced by Qi in 2021, where information is encoded in discrete variables.
arXiv Detail & Related papers (2024-02-26T19:00:01Z) - Making Existing Quantum Position Verification Protocols Secure Against
Arbitrary Transmission Loss [0.889974344676093]
In quantum position verification (QPV) protocols, even relatively small loss rates can compromise security.
We modify the usual structure of QPV protocols and prove that this modification makes the potentially high transmission loss between the verifiers security-irrelevant.
We show possible implementations of the required photon presence detection, making c-$mathrmQPV_mathrmBB84f$ a protocol that solves all major practical issues in QPV.
arXiv Detail & Related papers (2023-12-19T21:38:10Z) - New protocols for quantum key distribution with explicit upper and lower
bound on secret-key rate [0.0]
We present two new schemes for quantum key distribution (QKD) which neither require entanglement nor require an ideal single photon source.
The proposed protocols can be implemented using realistic single photon sources which are commercially available.
arXiv Detail & Related papers (2022-12-26T11:14:39Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Towards practical and error-robust quantum position verification [0.0]
Loss of inputs can be detrimental to the security of quantum position verification (QPV) protocols.
We propose a new fully loss-tolerant protocol QPV$_textsfSWAP$, based on the SWAP test.
We show that the protocol remains secure even if unentangled attackers are allowed to quantum communicate.
arXiv Detail & Related papers (2021-06-24T11:10:44Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Geometry of Banach spaces: a new route towards Position Based
Cryptography [65.51757376525798]
We study Position Based Quantum Cryptography (PBQC) from the perspective of geometric functional analysis and its connections with quantum games.
The main question we are interested in asks for the optimal amount of entanglement that a coalition of attackers have to share in order to compromise the security of any PBQC protocol.
We show that the understanding of the type properties of some more involved Banach spaces would allow to drop out the assumptions and lead to unconditional lower bounds on the resources used to attack our protocol.
arXiv Detail & Related papers (2021-03-30T13:55:11Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.