Universal quantum computation via scalable measurement-free error correction
- URL: http://arxiv.org/abs/2412.15187v2
- Date: Thu, 16 Jan 2025 18:22:51 GMT
- Title: Universal quantum computation via scalable measurement-free error correction
- Authors: Stefano Veroni, Alexandru Paler, Giacomo Giudice,
- Abstract summary: We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements.
We introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $mathitCCZ$ gate.
In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10-3$.
- Score: 45.29832252085144
- License:
- Abstract: We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements. To this end, we introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $\mathit{CCZ}$ gate, enabling a universal set of fault-tolerant operations. Independently, we demonstrate that certain stabilizer codes can be concatenated in a measurement-free way without having to rely on a universal logical gate set. This is achieved by means of the disposable Toffoli gadget, which realizes the feedback operation in a resource-efficient way. For the purpose of benchmarking the proposed protocols with circuit-level noise, we implement an efficient method to simulate non-Clifford circuits consisting of few Hadamard gates. In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10^{-3}$. Altogether, the deformation protocol and the Toffoli gadget provide a blueprint for a fully fault-tolerant architecture without any feed-forward operation, which is particularly suited for state-of-the-art neutral-atom platforms.
Related papers
- A Universal Circuit Set Using the $S_3$ Quantum Double [0.5231056284485742]
We present a quantum double model $mathcalD(S_3)$ -- a specific non-Abelian topological code.
We encode each physical degree of freedom of $mathcalD(S_3)$ into a novel, quantum, error-correcting code.
Our proposal offers a promising path to realize universal topological quantum computation in the NISQ era.
arXiv Detail & Related papers (2024-11-14T18:58:41Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
arXiv Detail & Related papers (2024-09-20T12:54:47Z) - Logical Gates and Read-Out of Superconducting Gottesman-Kitaev-Preskill Qubits [0.0]
In superconducting circuits, all the required two-qubit gates can be implemented with a single piece of hardware.
We analyze the error-spreading properties of GKP Clifford gates and describe how a modification in the decoder can reduce the gate infidelity by multiple orders of magnitude.
arXiv Detail & Related papers (2024-03-04T19:00:04Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Measurement-free fault-tolerant quantum error correction in near-term
devices [0.0]
We provide a novel scheme to perform QEC cycles without the need of measuring qubits.
We benchmark logical failure rates of the scheme in comparison to a flag-qubit based EC cycle.
We outline how our scheme could be implemented in ion traps and with neutral atoms in a tweezer array.
arXiv Detail & Related papers (2023-07-25T07:22:23Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Experimental Characterization of Fault-Tolerant Circuits in Small-Scale
Quantum Processors [67.47400131519277]
A code's logical gate set may be deemed fault-tolerant for gate sequences larger than 10 gates.
Some circuits did not satisfy the fault tolerance criterion.
It is most accurate to assess the fault tolerance criterion when the circuits tested are restricted to those that give rise to an output state with a low dimension.
arXiv Detail & Related papers (2021-12-08T01:52:36Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.