A socio-physics based hybrid metaheuristic for solving complex
non-convex constrained optimization problems
- URL: http://arxiv.org/abs/2212.03711v1
- Date: Fri, 2 Sep 2022 07:46:46 GMT
- Title: A socio-physics based hybrid metaheuristic for solving complex
non-convex constrained optimization problems
- Authors: Ishaan R Kale, Anand J Kulkarni, Efren Mezura-Montes
- Abstract summary: It is necessary to critically validate the proposed constrained optimization techniques.
The search is different as it involves a large number of linear constraints and non-type inequality.
The first CI-based algorithm incorporates a self-adaptive penalty approach.
The second algorithm combines CI-SAPF with the referred properties of the future.
- Score: 0.19662978733004596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several Artificial Intelligence based heuristic and metaheuristic algorithms
have been developed so far. These algorithms have shown their superiority
towards solving complex problems from different domains. However, it is
necessary to critically validate these algorithms for solving real-world
constrained optimization problems. The search behavior in those problems is
different as it involves large number of linear, nonlinear and non-convex type
equality and inequality constraints. In this work a 57 real-world constrained
optimization problems test suite is solved using two constrained metaheuristic
algorithms originated from a socio-based Cohort Intelligence (CI) algorithm.
The first CI-based algorithm incorporates a self-adaptive penalty function
approach i.e., CI-SAPF. The second algorithm combines CI-SAPF with the
intrinsic properties of the physics-based Colliding Bodies Optimization (CBO)
referred to CI-SAPF-CBO. The results obtained from CI-SAPF and CI-SAPF-CBO are
compared with other constrained optimization algorithms. The superiority of the
proposed algorithms is discussed in details followed by future directions to
evolve the constrained handling techniques.
Related papers
- BMR and BWR: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems [0.5755004576310334]
Two simple yet powerful optimization algorithms, named the Best-MeanRandom (BMR) and Best-Worst-Random (BWR) algorithms, are developed and presented in this paper.
arXiv Detail & Related papers (2024-07-15T18:11:47Z) - A two-phase-ACO algorithm for solving nonlinear optimization problems subjected to fuzzy relational equations [0.0]
In this paper, we investigate nonlinear optimization problems whose constraints are defined as fuzzy relational equations (FRE) with feasible-min composition.
The ability of an ant colony optimization algorithm (denoted by ACOR) to tackle algorithm problems and that of continuous ant colony optimization algorithm (denoted by ACO) to solve continuous optimization problems are discussed.
arXiv Detail & Related papers (2024-05-17T09:24:07Z) - Solution to Advanced Manufacturing Process Problems using Cohort
Intelligence Algorithm with Improved Constraint Handling Approaches [0.07989135005592125]
Cohort Intelligence (CI) algorithm is a socio inspired optimization technique which is successfully applied for solving several unconstrained & constrained real-world problems from the domains such as design, manufacturing, supply chain, healthcare, etc.
arXiv Detail & Related papers (2023-10-16T05:40:23Z) - Modified LAB Algorithm with Clustering-based Search Space Reduction
Method for solving Engineering Design Problems [0.7789406630452325]
A modified LAB algorithm is introduced in this paper.
The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition.
The algorithm exhibited improved and superior robustness as well as search space exploration capabilities.
arXiv Detail & Related papers (2023-10-04T12:35:13Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
Bilevel optimization (BO) has arisen as a powerful tool for solving many modern machine learning problems.
Existing gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations.
We propose a novel BO algorithm, which adopts Evolution Strategies (ES) based method to approximate the response Jacobian matrix in the hypergradient of BO.
arXiv Detail & Related papers (2021-10-13T19:36:50Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
This thesis provides a comprehensive convergence rate analysis for bilevel optimization algorithms.
For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms.
We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions.
arXiv Detail & Related papers (2021-07-31T22:05:47Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.