Detection of hidden photon dark matter using the direct excitation of
transmon qubits
- URL: http://arxiv.org/abs/2212.03884v2
- Date: Fri, 17 Nov 2023 13:19:38 GMT
- Title: Detection of hidden photon dark matter using the direct excitation of
transmon qubits
- Authors: Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta,
Thanaporn Sichanugrist
- Abstract summary: We propose a novel dark matter detection method utilizing the excitation of superconducting transmon qubits.
A simple extension to the frequency-tunable SQUID-based transmon enables the mass scan to cover the whole $4-40 murm eV$ ($1-10$ GHz) range.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel dark matter detection method utilizing the excitation of
superconducting transmon qubits. Assuming the hidden photon dark matter of a
mass of $O(10)\ \mu{\rm eV}$, the classical wave-matter oscillation induces an
effective ac electric field via the small kinetic mixing with the ordinary
photon. This serves as a coherent drive field for a qubit when it is resonant,
evolving it from the ground state towards the first-excited state. We evaluate
the rate of such evolution and observable excitations in the measurements, as
well as the search sensitivity to the hidden photon dark matter. For a selected
mass, one can reach $\epsilon \sim 10^{-12}-10^{-14}$ (where $\epsilon$ is the
kinetic mixing parameter of the hidden photon) with a single standard transmon
qubit. A simple extension to the frequency-tunable SQUID-based transmon enables
the mass scan to cover the whole $4-40\ \mu{\rm eV}$ ($1-10$ GHz) range within
a reasonable length of run time. The sensitivity scalability along the number
of the qubits also makes it a promising platform in accord to the rapid
evolution of the superconducting quantum computer technology.
Related papers
- Highly Excited Electron Cyclotron for QCD Axion and Dark-Photon Detection [3.151469999729297]
We propose using highly excited cyclotron states of a trapped electron to detect meV axion and dark photon dark matter.
We minimize the required averaging time for cyclotron detection to $t_textave sim 10-6 $ seconds, permitting detection of such a highly excited state before its decay.
arXiv Detail & Related papers (2024-10-07T23:20:18Z) - Microwave single-photon detection using a hybrid spin-optomechanical
quantum interface [0.0]
We propose a hybrid spin-optomechanical interface to detect single microwave photons.
The microwave photons are coupled to a phononic resonator via piezoelectric actuation.
arXiv Detail & Related papers (2024-01-19T02:00:38Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Cyclically operated Single Microwave Photon Counter with
$10^\mathrm{-22}$ $\mathrm{W/\sqrt{Hz}}$ sensitivity [33.7054351451505]
Single photon detection played an important role in the development of quantum optics.
In recent years, significant progress has been made in developing single microwave photon detectors (SMPDs) based on superconducting quantum bits or bolometers.
We present a practical SMPD based on the irreversible transfer of an incoming photon to the excited state of a transmon qubit by a four-wave mixing process.
arXiv Detail & Related papers (2023-07-07T14:11:14Z) - Stimulated emission of signal photons from dark matter waves [2.0590294143351064]
We present a signal enhancement technique that utilizes a superconducting qubit to prepare a superconducting microwave cavity in a non-classical Fock state.
We conduct a dark photon search in a band around $mathrm5.965, GHz, (24.67, mu eV)$, where the kinetic mixing angle $epsilon geq 4.35 times 10-13$ is excluded.
arXiv Detail & Related papers (2023-05-05T17:25:44Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Searching for Dark Matter with a Superconducting Qubit [2.0590294143351064]
Detection mechanisms for low mass bosonic dark matter candidates, such as the axion hidden photon, leverage potential interactions with electromagnetic fields.
Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter.
arXiv Detail & Related papers (2020-08-27T16:28:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.