Stimulated emission of signal photons from dark matter waves
- URL: http://arxiv.org/abs/2305.03700v1
- Date: Fri, 5 May 2023 17:25:44 GMT
- Title: Stimulated emission of signal photons from dark matter waves
- Authors: Ankur Agrawal, Akash V. Dixit, Tanay Roy, Srivatsan Chakram, Kevin He,
Ravi K. Naik, David I. Schuster, Aaron Chou
- Abstract summary: We present a signal enhancement technique that utilizes a superconducting qubit to prepare a superconducting microwave cavity in a non-classical Fock state.
We conduct a dark photon search in a band around $mathrm5.965, GHz, (24.67, mu eV)$, where the kinetic mixing angle $epsilon geq 4.35 times 10-13$ is excluded.
- Score: 2.0590294143351064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The manipulation of quantum states of light has resulted in significant
advancements in both dark matter searches and gravitational wave detectors
[1-4]. Current dark matter searches operating in the microwave frequency range
use nearly quantum-limited amplifiers [3, 5, 6]. Future high frequency searches
will use photon counting techniques [1] to evade the standard quantum limit. We
present a signal enhancement technique that utilizes a superconducting qubit to
prepare a superconducting microwave cavity in a non-classical Fock state and
stimulate the emission of a photon from a dark matter wave. By initializing the
cavity in an $|n=4\rangle$ Fock state, we demonstrate a quantum enhancement
technique that increases the signal photon rate and hence also the dark matter
scan rate each by a factor of 2.78. Using this technique, we conduct a dark
photon search in a band around $\mathrm{5.965\, GHz \, (24.67\, \mu eV)}$,
where the kinetic mixing angle $\epsilon \geq 4.35 \times 10^{-13}$ is excluded
at the $90\%$ confidence level.
Related papers
- Observation of thermal microwave photons with a Josephson junction detector [0.0]
Single photon detectors (SPDs) were demonstrated from $gamma$-rays to infrared wavelengths.
The energy of $10,mathrmGHz$ microwave photon, about $40,mathrmmu eV$ or $7, mathrmyJ,$ is enough to force a superconducting Josephson junction into its resistive state.
The device shows an efficiency up to 40% and a dark count rate of $0.1,mathrmHz$ in a bandwidth of several gigahertz.
arXiv Detail & Related papers (2024-04-16T09:57:30Z) - Search for dark photons with synchronized quantum sensor network [18.00599935008738]
Current constraints on the existence of dark photons with masses below MHz are predominantly set by cosmological or astrophysical limits.
Here, we demonstrate a network of 15 atomic magnetometers, which are synchronized with the Global Positioning System (GPS) and are situated on the edges of two meter-scale shielded rooms.
Using this network, we constrain the kinetic mixing coefficient of dark photon dark matter over the mass range 1-500 Hz, which gives the strongest constraint of a terrestrial experiment within this mass window.
arXiv Detail & Related papers (2023-05-01T15:51:34Z) - Detection of hidden photon dark matter using the direct excitation of
transmon qubits [0.0]
We propose a novel dark matter detection method utilizing the excitation of superconducting transmon qubits.
A simple extension to the frequency-tunable SQUID-based transmon enables the mass scan to cover the whole $4-40 murm eV$ ($1-10$ GHz) range.
arXiv Detail & Related papers (2022-12-07T19:00:01Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - An experimental setup to generate narrowband bi-photons via four-wave
mixing in cold atoms [0.0]
We create near-infrared and narrow-band correlated photon pairs by inducing four-wave mixing in a cold gas of $87$Rb atoms confined in a magneto-optical trap.
The non-classical nature of the photons pairs is confirmed by observing a violation of Cauchy-Schwarz inequality by a factor of 5.6 $times 105$ in a Hanbury Brown - Twiss interferometer.
The combination of high brightness and narrow-band spectrum makes this photon-pair source a viable tool in fundamental studies of quantum states and opens the door to use them in quantum technologies
arXiv Detail & Related papers (2021-08-19T15:12:02Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Searching for Dark Matter with a Superconducting Qubit [2.0590294143351064]
Detection mechanisms for low mass bosonic dark matter candidates, such as the axion hidden photon, leverage potential interactions with electromagnetic fields.
Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter.
arXiv Detail & Related papers (2020-08-27T16:28:54Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.