Self-organized Limit Cycles in Red-detuned Atom-cavity Systems
- URL: http://arxiv.org/abs/2212.04142v1
- Date: Thu, 8 Dec 2022 08:43:19 GMT
- Title: Self-organized Limit Cycles in Red-detuned Atom-cavity Systems
- Authors: Pan Gao, Zheng-Wei Zhou, Guang-Can Guo, Xi-Wang Luo
- Abstract summary: Recent experimental advances in the field of cold-atom cavity QED provide a powerful tool for exploring non-equilibrium correlated quantum phenomena.
We present the dynamical phase diagram of a driven Bose-Einstein condensate coupled with the light field of a cavity, with a transverse driving field red-detuned from atomic resonance.
We identify regions in parameter space showing dynamical instabilities in the form of limit cycles, which evolve into chaotic behavior in the strong driving limit.
- Score: 4.4886210896619945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experimental advances in the field of cold-atom cavity QED provide a
powerful tool for exploring non-equilibrium correlated quantum phenomena beyond
conventional condensed-matter scenarios. We present the dynamical phase diagram
of a driven Bose-Einstein condensate coupled with the light field of a cavity,
with a transverse driving field red-detuned from atomic resonance. We identify
regions in parameter space showing dynamical instabilities in the form of limit
cycles, which evolve into chaotic behavior in the strong driving limit. Such
limit cycles originate from the interplay between cavity dissipation and
atom-induced resonance frequency shift, which modifies the phase of cavity mode
and gives excessive negative feedback on the atomic density modulation, leading
to instabilities of the superradiant scattering. We find interesting merging of
the limit cycles related by a $Z_2$ symmetry, and identify a new type of limit
cycle formed by purely atomic excitations. The effects of quantum fluctuations
and atomic interactions are also investigated.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dynamical phases of a BEC in a bad optical cavity at optomechanical resonance [0.0]
We study the emergence of dynamical phases of a Bose-Einstein condensate that is optomechanically coupled to a dissipative cavity mode.
We derive an effective model for the atomic motion, where the cavity degrees of freedom are eliminated.
We show that such limit cycle solutions are metastable configurations of the adiabatic model.
arXiv Detail & Related papers (2024-08-05T14:01:13Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Fermionic matter-wave quantum optics with cold-atom impurity models [0.688204255655161]
We study simple fermionic impurity models and discuss fermionic analogues of several paradigmatic phenomena in quantum optics.
For a single impurity, we highlight interesting ground-state features, focusing in particular on real-space signatures of an emergent length scale associated with an impurity screening cloud.
arXiv Detail & Related papers (2023-05-19T11:39:27Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum Cherenkov transition of finite momentum Bose polarons [0.0]
We investigate the behavior of a finite-momentum impurity immersed in a weakly interacting Bose-Einstein condensate (BEC) of ultra-cold atoms.
We identify a transition in the far-from-equilibrium dynamics of the system after the attractive short-range impurity-boson interaction is quenched on.
The transition should be experimentally observable via a variety of common protocols in ultracold atomic systems.
arXiv Detail & Related papers (2021-09-25T02:02:32Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Zero-point excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities [0.0]
We study a circularly moving impurity in an atomic condensate for realisation of superradiance phenomena in tabletop experiments.
For sufficiently large rotation speeds, the zero-point fluctuations of the phonon field induce a sizeable excitation rate of the detector.
arXiv Detail & Related papers (2020-01-23T16:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.