Zero-point excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities
- URL: http://arxiv.org/abs/2001.08646v3
- Date: Wed, 23 Sep 2020 20:53:19 GMT
- Title: Zero-point excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities
- Authors: Jamir Marino, Gabriel Menezes, Iacopo Carusotto
- Abstract summary: We study a circularly moving impurity in an atomic condensate for realisation of superradiance phenomena in tabletop experiments.
For sufficiently large rotation speeds, the zero-point fluctuations of the phonon field induce a sizeable excitation rate of the detector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a circularly moving impurity in an atomic condensate for the
realisation of superradiance phenomena in tabletop experiments. The impurity is
coupled to the density fluctuations of the condensate and, in a quantum field
theory language, it serves as an analog of a detector for the quantum phonon
field. For sufficiently large rotation speeds, the zero-point fluctuations of
the phonon field induce a sizeable excitation rate of the detector even when
the condensate is initially at rest in its ground state. For spatially confined
condensates and harmonic detectors, such a superradiant emission of sound waves
provides a dynamical instability mechanism leading to a new concept of phonon
lasing. Following an analogy with the theory of rotating black holes, our
results suggest a promising avenue to quantum simulate basic interaction
processes involving fast moving detectors in curved space-times.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Dynamical excitation control and multimode emission of an atom-photon bound state [3.0423353969532436]
Atom-photon bound states arise from the coupling of quantum emitters to the band edge of dispersion-engineered waveguides.
We study the dynamics of an atom-photon bound state emerging from coupling a frequency-tunable quantum emitter to a microwave metamaterial.
arXiv Detail & Related papers (2024-04-08T14:16:41Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Chiral Cavity Quantum Electrodynamics [0.0]
We explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice.
We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon.
arXiv Detail & Related papers (2021-09-09T22:26:36Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Realizing an Unruh-DeWitt detector through electro-optic sampling of the
electromagnetic vacuum [0.0]
We present a new theoretical framework to describe the experimental advances in electro-optic detection of broadband quantum states.
We discuss the specific working regime of such processes, and the consequences through characterization of the quantum light involved in the detection.
arXiv Detail & Related papers (2021-03-26T10:04:07Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.