論文の概要: Mind the Gap: Measuring Generalization Performance Across Multiple
Objectives
- arxiv url: http://arxiv.org/abs/2212.04183v1
- Date: Thu, 8 Dec 2022 10:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 16:09:40.492454
- Title: Mind the Gap: Measuring Generalization Performance Across Multiple
Objectives
- Title(参考訳): Mind the Gap: 複数の目的にまたがる一般化パフォーマンスの測定
- Authors: Matthias Feurer, Katharina Eggensperger, Edward Bergman, Florian
Pfisterer, Bernd Bischl, Frank Hutter
- Abstract要約: 本稿では,MHPO法の一般化性能を計測できる新しい評価プロトコルを提案する。
また,2つの最適化実験を比較する能力についても検討した。
- 参考スコア(独自算出の注目度): 29.889018459046316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern machine learning models are often constructed taking into account
multiple objectives, e.g., to minimize inference time while also maximizing
accuracy. Multi-objective hyperparameter optimization (MHPO) algorithms return
such candidate models and the approximation of the Pareto front is used to
assess their performance. However, when estimating generalization performance
of an approximation of a Pareto front found on a validation set by computing
the performance of the individual models on the test set, models might no
longer be Pareto-optimal. This makes it unclear how to measure performance. To
resolve this, we provide a novel evaluation protocol that allows measuring the
generalization performance of MHPO methods and to study its capabilities for
comparing two optimization experiments.
- Abstract(参考訳): 現代の機械学習モデルは、例えば推論時間を最小化し、精度を最大化するために、複数の目的を考慮してしばしば構築される。
多目的ハイパーパラメータ最適化(MHPO)アルゴリズムはそのような候補モデルを返却し、パレートフロントの近似を用いてそれらの性能を評価する。
しかしながら、テストセット上の個々のモデルのパフォーマンスを計算することによって検証セットにあるパレートフロントの近似の一般化性能を推定する場合、モデルはパレート最適ではないかもしれない。
これにより、パフォーマンスの計測方法が明確になる。
そこで本研究では, MHPO法の一般化性能を計測し, 2つの最適化実験を比較する能力について検討する新しい評価プロトコルを提案する。
関連論文リスト
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
Amortized Pareto Front (MAP) を用いた新しい低演算アルゴリズム Model Merging を導入する。
MAPは、複数のモデルをマージするためのスケーリング係数のセットを効率的に識別し、関連するトレードオフを反映する。
また,タスク数が比較的少ないシナリオではベイジアンMAP,タスク数の多い状況ではNested MAPを導入し,計算コストを削減した。
論文 参考訳(メタデータ) (2024-06-11T17:55:25Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
我々は多目的機械学習(ML)に適した人間中心型対話型HPO手法を提案する。
ユーザが自分のニーズに最も適した指標を推測する代わりに、私たちのアプローチは自動的に適切な指標を学習します。
論文 参考訳(メタデータ) (2023-09-07T09:22:05Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
本稿では,観測ノイズについて最小限の仮定を行う等化量子レグレッションを活用することを提案する。
これは経験的ベンチマークでのHPO収束を早くすることを意味する。
論文 参考訳(メタデータ) (2023-05-05T15:33:39Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
本稿では,機械学習モデルにおける任意のハイパーパラメータの任意の集合に対する近似値を求めるためのエージェントベース協調手法を提案する。
提案モデルの動作,特に設計パラメータの変化に対して,機械学習およびグローバル関数最適化アプリケーションの両方で検討する。
論文 参考訳(メタデータ) (2023-03-03T21:10:17Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - Post-hoc Models for Performance Estimation of Machine Learning Inference [22.977047604404884]
さまざまなシナリオにおいて、推論中に機械学習モデルがどれだけうまく機能するかを推定することが重要である。
性能評価をさまざまなメトリクスやシナリオに体系的に一般化する。
提案したポストホックモデルは標準信頼ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-10-06T02:20:37Z) - Multi-objective Asynchronous Successive Halving [10.632606255280649]
本稿では,非同期半減期 (ASHA) を多目的 (MO) 設定に拡張するアルゴリズムを提案する。
実験分析の結果,MO ASHAはMO HPOを大規模に実行可能であることがわかった。
我々のアルゴリズムは、この地域における将来の研究の新たなベースラインを確立する。
論文 参考訳(メタデータ) (2021-06-23T19:39:31Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。