Constraints on the design of neuromorphic circuits set by the properties
of neural population codes
- URL: http://arxiv.org/abs/2212.04317v1
- Date: Thu, 8 Dec 2022 15:16:04 GMT
- Title: Constraints on the design of neuromorphic circuits set by the properties
of neural population codes
- Authors: Stefano Panzeri and Ella Janotte and Alejandro Peque\~no-Zurro and
Jacopo Bonato and Chiara Bartolozzi
- Abstract summary: In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
- Score: 61.15277741147157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the brain, information is encoded, transmitted and used to inform
behaviour at the level of timing of action potentials distributed over
population of neurons. To implement neural-like systems in silico, to emulate
neural function, and to interface successfully with the brain, neuromorphic
circuits need to encode information in a way compatible to that used by
populations of neuron in the brain. To facilitate the cross-talk between
neuromorphic engineering and neuroscience, in this Review we first critically
examine and summarize emerging recent findings about how population of neurons
encode and transmit information. We examine the effects on encoding and readout
of information for different features of neural population activity, namely the
sparseness of neural representations, the heterogeneity of neural properties,
the correlations among neurons, and the time scales (from short to long) at
which neurons encode information and maintain it consistently over time.
Finally, we critically elaborate on how these facts constrain the design of
information coding in neuromorphic circuits. We focus primarily on the
implications for designing neuromorphic circuits that communicate with the
brain, as in this case it is essential that artificial and biological neurons
use compatible neural codes. However, we also discuss implications for the
design of neuromorphic systems for implementation or emulation of neural
computation.
Related papers
- NeuroBind: Towards Unified Multimodal Representations for Neural Signals [20.02503060795981]
We present NeuroBind, a representation that unifies multiple brain signal types, including EEG, fMRI, calcium imaging, and spiking data.
This approach holds significant potential for advancing neuroscience research, improving AI systems, and developing neuroprosthetics and brain-computer interfaces.
arXiv Detail & Related papers (2024-07-19T04:42:52Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Learn to integrate parts for whole through correlated neural variability [8.173681663544757]
Sensory perception originates from the responses of sensory neurons, which react to a collection of sensory signals linked to physical attributes of a singular perceptual object.
Unraveling how the brain extracts perceptual information from these neuronal responses is a pivotal challenge in both computational neuroscience and machine learning.
We introduce a statistical mechanical theory, where perceptual information is first encoded in the correlated variability of sensory neurons and then reformatted into the firing rates of downstream neurons.
arXiv Detail & Related papers (2024-01-01T13:05:29Z) - Joint Learning Neuronal Skeleton and Brain Circuit Topology with Permutation Invariant Encoders for Neuron Classification [33.47541392305739]
We propose NeuNet framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit.
We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain.
arXiv Detail & Related papers (2023-12-22T08:31:11Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern
Recognizers [0.0]
thesis is focused on the central idea that single neurons in the brain should be regarded as temporally highly complex-temporal pattern recognizers.
In chapter 2 we demonstrate that single neurons can generate temporally precise output patterns in response to specific-temporal input patterns.
In chapter 3, we use the differentiable deep network of a realistic cortical neuron as a tool to approximate the implications of the output of the neuron.
arXiv Detail & Related papers (2023-09-26T17:32:08Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors.
In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron.
arXiv Detail & Related papers (2023-01-23T02:23:45Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.