Joint Learning Neuronal Skeleton and Brain Circuit Topology with Permutation Invariant Encoders for Neuron Classification
- URL: http://arxiv.org/abs/2312.14518v2
- Date: Tue, 26 Mar 2024 02:45:29 GMT
- Title: Joint Learning Neuronal Skeleton and Brain Circuit Topology with Permutation Invariant Encoders for Neuron Classification
- Authors: Minghui Liao, Guojia Wan, Bo Du,
- Abstract summary: We propose NeuNet framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit.
We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain.
- Score: 33.47541392305739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining the types of neurons within a nervous system plays a significant role in the analysis of brain connectomics and the investigation of neurological diseases. However, the efficiency of utilizing anatomical, physiological, or molecular characteristics of neurons is relatively low and costly. With the advancements in electron microscopy imaging and analysis techniques for brain tissue, we are able to obtain whole-brain connectome consisting neuronal high-resolution morphology and connectivity information. However, few models are built based on such data for automated neuron classification. In this paper, we propose NeuNet, a framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit. Specifically, NeuNet consists of three components, namely Skeleton Encoder, Connectome Encoder, and Readout Layer. Skeleton Encoder integrates the local information of neurons in a bottom-up manner, with a one-dimensional convolution in neural skeleton's point data; Connectome Encoder uses a graph neural network to capture the topological information of neural circuit; finally, Readout Layer fuses the above two information and outputs classification results. We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain. Experiments on these two datasets demonstrated the effectiveness of our model with accuracy of 0.9169 and 0.9363, respectively. Code and data are available at: https://github.com/WHUminghui/NeuNet.
Related papers
- NeuroBind: Towards Unified Multimodal Representations for Neural Signals [20.02503060795981]
We present NeuroBind, a representation that unifies multiple brain signal types, including EEG, fMRI, calcium imaging, and spiking data.
This approach holds significant potential for advancing neuroscience research, improving AI systems, and developing neuroprosthetics and brain-computer interfaces.
arXiv Detail & Related papers (2024-07-19T04:42:52Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features.
Many neurons exhibit $textitmixed selectivity$, i.e., they represent multiple unrelated features.
We propose an automated method for quantifying visual interpretability and an approach for finding meaningful directions in network activation space.
arXiv Detail & Related papers (2023-10-17T17:41:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Rapid detection and recognition of whole brain activity in a freely
behaving Caenorhabditis elegans [18.788855494800238]
We propose a cascade solution for long-term and rapid recognition of head ganglion neurons in a freely moving textitC. elegans.
Under the constraint of a small number of training samples, our bottom-up approach is able to process each volume - $1024 times 1024 times 18$ in voxels - in less than 1 second.
Our work represents an important development towards a rapid and fully automated algorithm for decoding whole brain activity underlying natural animal behaviors.
arXiv Detail & Related papers (2021-09-22T01:33:54Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Generalizable Machine Learning in Neuroscience using Graph Neural
Networks [0.0]
We show that neural networks perform remarkably well on both neuron-level dynamics prediction, and behavioral state classification.
In our experiments, we found that graph neural networks generally outperformed structure models and excel in generalization on unseen organisms.
arXiv Detail & Related papers (2020-10-16T18:09:46Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.