論文の概要: Robust Speech Recognition via Large-Scale Weak Supervision
- arxiv url: http://arxiv.org/abs/2212.04356v1
- Date: Tue, 6 Dec 2022 18:46:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 15:07:12.146729
- Title: Robust Speech Recognition via Large-Scale Weak Supervision
- Title(参考訳): 大規模弱監視によるロバスト音声認識
- Authors: Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, Ilya Sutskever
- Abstract要約: インターネット上での大量の音声の書き起こしを単純に予測するために訓練された音声処理システムの能力について検討する。
マルチランガルとマルチタスクの監視を680,000時間にスケールすると、結果は標準ベンチマークによく当てはまる。
私たちは、堅牢な音声処理のさらなる研究の基盤となるために、モデルと推論コードをリリースしています。
- 参考スコア(独自算出の注目度): 69.63329359286419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the capabilities of speech processing systems trained simply to
predict large amounts of transcripts of audio on the internet. When scaled to
680,000 hours of multilingual and multitask supervision, the resulting models
generalize well to standard benchmarks and are often competitive with prior
fully supervised results but in a zero-shot transfer setting without the need
for any fine-tuning. When compared to humans, the models approach their
accuracy and robustness. We are releasing models and inference code to serve as
a foundation for further work on robust speech processing.
- Abstract(参考訳): インターネット上の大量の音声の書き起こしを単純に予測するために訓練された音声処理システムの能力について検討する。
マルチリンガルとマルチタスクの監視を680,000時間にスケールすると、結果のモデルは標準ベンチマークによく当てはまり、以前の完全に監督された結果と競合することが多いが、微調整を必要とせずにゼロショット転送設定になる。
人間と比較すると、モデルは正確性と堅牢性に近づきます。
我々は、ロバストな音声処理に関するさらなる作業の基盤となるモデルと推論コードをリリースします。
関連論文リスト
- SpeechVerse: A Large-scale Generalizable Audio Language Model [38.67969337605572]
SpeechVerseは堅牢なマルチタスクトレーニングおよびカリキュラム学習フレームワークである。
学習可能なパラメータの小さなセットを通じて、事前訓練された音声とテキスト基礎モデルを組み合わせる。
実験により、我々のマルチタスクSpeechVerseモデルは、従来のタスク固有のベースラインよりも11タスク中9タスクの方が優れていることが判明した。
論文 参考訳(メタデータ) (2024-05-14T03:33:31Z) - Exploring Speech Recognition, Translation, and Understanding with
Discrete Speech Units: A Comparative Study [68.88536866933038]
音声信号は、通常、毎秒数万のレートでサンプリングされ、冗長性を含んでいる。
近年の研究では、自己教師型学習表現から派生した離散音声単位の使用が提案されている。
復号化やサブワードモデリングなどの様々な手法を適用することで、さらに音声列の長さを圧縮することができる。
論文 参考訳(メタデータ) (2023-09-27T17:21:13Z) - Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages [76.95115818308918]
100以上の言語で自動音声認識(ASR)を行う単一大モデルであるUniversal Speech Model (USM)を導入する。
これは300以上の言語にまたがる1200万時間 (M) の大規模なラベル付き多言語データセット上で、モデルのエンコーダを事前トレーニングすることで達成される。
我々は,多言語事前学習とランダム投影量子化と音声-テキスト・モダリティマッチングを用いて,下流多言語ASRおよび音声-テキスト翻訳タスクの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-02T07:47:18Z) - A Single Self-Supervised Model for Many Speech Modalities Enables
Zero-Shot Modality Transfer [31.028408352051684]
マルチモーダル音声と非モーダル音声の両方を活用できる自己教師型事前学習フレームワークであるu-HuBERTを提案する。
LRS3では1.2%/1.4%/27.2%の音声認識単語誤り率を示す。
論文 参考訳(メタデータ) (2022-07-14T16:21:33Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech
Processing [102.45426364965887]
そこで本研究では,フルスタックダウンストリーム音声タスクを解決するための,事前学習型モデルWavLMを提案する。
WavLMはHuBERTフレームワークに基づいて構築されており、音声コンテンツモデリングと話者アイデンティティ保存の両方に重点を置いている。
トレーニングデータセットを60k時間から94k時間までの公開オーディオデータにスケールアップし、そのトレーニング手順を最適化して表現抽出を改善する。
論文 参考訳(メタデータ) (2021-10-26T17:55:19Z) - SUPERB: Speech processing Universal PERformance Benchmark [78.41287216481203]
自然言語処理(NLP)とコンピュータビジョン(CV)の研究を進める上で、SSL(Self-supervised Learning)は不可欠です。
SuperBは、幅広い音声処理タスクで共有モデルのパフォーマンスをベンチマークするためのリーダーボードです。
凍結共有モデル上にタスク特化軽量予測ヘッドを学習することで、SUPERBタスクを解決するためのシンプルなフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:51:09Z) - End-to-End Adversarial Text-to-Speech [33.01223309795122]
正規化されたテキストや音素から音声をエンドツーエンドで合成することを学ぶ。
提案するジェネレータはフィードフォワードであり,トレーニングと推論の両方に効率的である。
敵対的フィードバックと予測損失を組み合わせた高忠実度オーディオを学習する。
論文 参考訳(メタデータ) (2020-06-05T17:41:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。