Multi-View Mesh Reconstruction with Neural Deferred Shading
- URL: http://arxiv.org/abs/2212.04386v1
- Date: Thu, 8 Dec 2022 16:29:46 GMT
- Title: Multi-View Mesh Reconstruction with Neural Deferred Shading
- Authors: Markus Worchel, Rodrigo Diaz, Weiwen Hu, Oliver Schreer, Ingo
Feldmann, Peter Eisert
- Abstract summary: State-of-the-art methods use both neural surface representations and neural shading.
We represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rendering and neural shading.
We evaluate our runtime on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines while surpassing them in optimization.
- Score: 0.8514420632209809
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose an analysis-by-synthesis method for fast multi-view 3D
reconstruction of opaque objects with arbitrary materials and illumination.
State-of-the-art methods use both neural surface representations and neural
rendering. While flexible, neural surface representations are a significant
bottleneck in optimization runtime. Instead, we represent surfaces as triangle
meshes and build a differentiable rendering pipeline around triangle
rasterization and neural shading. The renderer is used in a gradient descent
optimization where both a triangle mesh and a neural shader are jointly
optimized to reproduce the multi-view images. We evaluate our method on a
public 3D reconstruction dataset and show that it can match the reconstruction
accuracy of traditional baselines and neural approaches while surpassing them
in optimization runtime. Additionally, we investigate the shader and find that
it learns an interpretable representation of appearance, enabling applications
such as 3D material editing.
Related papers
- NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support [45.68296352822415]
We present a method for generating high-quality watertight manifold meshes from multi-view input images.
Our method combines the benefits of both worlds; we take the geometry obtained from neural fields, and further optimize the geometry as well as a compact neural texture representation.
arXiv Detail & Related papers (2023-05-26T17:59:21Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from
Photometric Images [52.021529273866896]
We propose a neural inverse rendering pipeline called IRON that operates on photometric images and outputs high-quality 3D content.
Our method adopts neural representations for geometry as signed distance fields (SDFs) and materials during optimization to enjoy their flexibility and compactness.
We show that our IRON achieves significantly better inverse rendering quality compared to prior works.
arXiv Detail & Related papers (2022-04-05T14:14:18Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.