Iterative Minimax Games with Coupled Linear Constraints
- URL: http://arxiv.org/abs/2212.04672v5
- Date: Tue, 24 Jun 2025 00:47:46 GMT
- Title: Iterative Minimax Games with Coupled Linear Constraints
- Authors: Huiling Zhang, Zi Xu, Yu-Hong Dai,
- Abstract summary: The bounds of handling nonmax mini games has gained significant momentum in machine learning communities.<n>We provide the first analysis for this class of games addressing the critical critical adversarial strategy.<n>We show that -2
- Score: 3.4683309709605328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of nonconvex minimax games has gained significant momentum in machine learning and decision science communities due to their fundamental connections to adversarial training scenarios. This work develops a primal-dual alternating proximal gradient (PDAPG) algorithm framework for resolving iterative minimax games featuring nonsmooth nonconvex objectives subject to coupled linear constraints. We establish rigorous convergence guarantees for both nonconvex-strongly concave and nonconvex-concave game configurations, demonstrating that PDAPG achieves an $\varepsilon$-stationary solution within $\mathcal{O}\left( \varepsilon ^{-2} \right)$ iterations for strongly concave settings and $\mathcal{O}\left( \varepsilon ^{-4} \right)$ iterations for concave scenarios. Our analysis provides the first known iteration complexity bounds for this class of constrained minimax games, particularly addressing the critical challenge of coupled linear constraints that induce inherent interdependencies among strategy variables. The proposed game-theoretic framework advances existing solution methodologies by simultaneously handling nonsmooth components and coordinated constraint structures through alternating primal-dual updates.
Related papers
- Stochastic Momentum Methods for Non-smooth Non-Convex Finite-Sum Coupled Compositional Optimization [64.99236464953032]
We propose a new state-of-the-art complexity of $O(/epsilon)$ for finding an (nearly) $'level KKT solution.<n>By applying our hinge-of-the-art complexity of $O(/epsilon)$ for finding an (nearly) $'level KKT solution, we achieve a new state-of-the-art complexity of $O(/epsilon)$ for finding an (nearly) $'level KKT solution.
arXiv Detail & Related papers (2025-06-03T06:31:59Z) - Stochastic Compositional Minimax Optimization with Provable Convergence Guarantees [14.301500851291989]
compositional minimax problems are in machine learning, yet there are only limited established on the convergence of this class of problems.
In this paper we propose a formal definition of the minimax problem which involves optimizing a minimax loss with a compositional structure.
arXiv Detail & Related papers (2024-08-22T16:00:31Z) - Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization [77.3396841985172]
We provide a unified analysis of two-timescale gradient ascent (TTGDA) for solving structured non minimax optimization problems.
Our contribution is to design TTGDA algorithms are effective beyond the setting.
arXiv Detail & Related papers (2024-08-21T20:14:54Z) - Zeroth-Order primal-dual Alternating Projection Gradient Algorithms for
Nonconvex Minimax Problems with Coupled linear Constraints [3.898056433020865]
We propose two zero-order regular complexity algorithms for non minimax problems with linear constraints.
To the best of our knowledge, they are first two zero-order algorithms with best for noncal complexity.
arXiv Detail & Related papers (2024-01-26T11:22:13Z) - An accelerated first-order regularized momentum descent ascent algorithm for stochastic nonconvex-concave minimax problems [0.4910937238451484]
We have an accelerated regularized momentum descent ascent algorithm (FORMDA) for solving non-concave mini problems.
The best complexity for bound algorithms to solve non-concave minimax problems under the station of objectivearity function.
arXiv Detail & Related papers (2023-10-24T01:45:11Z) - Decentralized Riemannian Algorithm for Nonconvex Minimax Problems [82.50374560598493]
The minimax algorithms for neural networks have been developed to solve many problems.
In this paper, we propose two types of minimax algorithms.
For the setting, we propose DRSGDA and prove that our method achieves a gradient.
arXiv Detail & Related papers (2023-02-08T01:42:45Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - HSVI can solve zero-sum Partially Observable Stochastic Games [7.293053431456775]
State-of-the-art methods for solving 2-player zero-sum imperfect games rely on linear programming or dynamic regret minimization.
We propose a novel family of promising approaches complementing those relying on linear programming or iterative methods.
arXiv Detail & Related papers (2022-10-26T11:41:57Z) - Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis [23.80683445944524]
We introduce a novel analysis for PLDA, the key are our newly developed nonsmooth and dual error iterations.<n>When $thetain [0,12]$, PLDA achieves the optimal $mathcalO()$ under mild assumptions.
arXiv Detail & Related papers (2022-09-22T07:12:48Z) - Near-Optimal No-Regret Learning for General Convex Games [121.50979258049135]
We show that regret can be obtained for general convex and compact strategy sets.
Our dynamics are on an instantiation of optimistic follow-the-regularized-bounds over an appropriately emphlifted space.
Even in those special cases where prior results apply, our algorithm improves over the state-of-the-art regret.
arXiv Detail & Related papers (2022-06-17T12:58:58Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Derivative-free Alternating Projection Algorithms for General
Nonconvex-Concave Minimax Problems [9.173866646584031]
In this paper, we propose an algorithm for nonsmooth zeroth-order minimax problems.
We show that it can be used to attack nonconcave minimax problems.
arXiv Detail & Related papers (2021-08-01T15:23:49Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for
Nonconvex-Concave Min-Max Problems [33.83671897619922]
Non-con-max problem arises in many applications including minimizing a pointwise set of non functions to solve this robust problem.
A.A. algorithm can achieve an $(/A-O-) of $(/A-O-)$ for a finite collection of non functions.
arXiv Detail & Related papers (2020-10-29T17:13:46Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - A Unified Single-loop Alternating Gradient Projection Algorithm for
Nonconvex-Concave and Convex-Nonconcave Minimax Problems [8.797831153231664]
We develop an efficient algorithm for solving minimax problems with theoretical general convexnon objective guarantees.
We show that the proposed algorithm can be used to solve both noncaveepsilon concave (strongly) and (strongly) convexnonconcave minimax problems.
arXiv Detail & Related papers (2020-06-03T04:00:52Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.