Joint quantum estimation of loss and nonlinearity in driven-dissipative
Kerr resonators
- URL: http://arxiv.org/abs/2212.05117v1
- Date: Fri, 9 Dec 2022 20:50:33 GMT
- Title: Joint quantum estimation of loss and nonlinearity in driven-dissipative
Kerr resonators
- Authors: Muhammad Asjad, Berihu Teklu, and Matteo G. A. Paris
- Abstract summary: We consider the realistic situation in which the parameters of interest are the loss rate and the nonlinear coupling, whereas the amplitude of the coherent driving is known and tunable.
We also investigate the performance of quadrature detection, and show that for both parameters the Fisher information oscillates in time, repeatedly approaching the corresponding QFI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We address multiparameter quantum estimation for coherently driven nonlinear
Kerr resonators in the presence of loss. In particular, we consider the
realistic situation in which the parameters of interest are the loss rate and
the nonlinear coupling, whereas the amplitude of the coherent driving is known
and externally tunable. Our results show that this driven-dissipative model is
asymptotically classical, i.e. the Uhlmann curvature vanishes, and the two
parameters may be jointly estimated without any additional noise of quantum
origin. We also find that the ultimate bound to precision, as quantified by the
quantum Fisher information (QFI), increases with the interaction time and the
driving amplitude for both parameters. Finally, we investigate the performance
of quadrature detection, and show that for both parameters the Fisher
information oscillates in time, repeatedly approaching the corresponding QFI.
Related papers
- Joint estimation of noise and nonlinearity in Kerr systems [0.0]
We address characterization of lossy and dephasing channels in the presence of self-Kerr interaction using coherent probes.
For lossy Kerr channels, our results show the loss characterization is enhanced in the presence of Kerr nonlinearity.
For dephasing Kerr channels, the QFIs of the two parameters are independent of the nonlinearity, and therefore no enhancement is observed.
arXiv Detail & Related papers (2024-06-14T17:59:08Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Characterization of partially accessible anisotropic spin chains in the
presence of anti-symmetric exchange [0.0]
We address quantum characterization of anisotropic spin chains in the presence of antisymmetric exchange.
We investigate whether the Hamiltonian parameters of the chain may be estimated with precision approaching the ultimate limit imposed by quantum mechanics.
arXiv Detail & Related papers (2024-01-25T19:26:35Z) - Multiparameter critical quantum metrology with impurity probes [0.0]
We introduce the two-impurity Kondo (2IK) model as a novel paradigm for critical quantum metrology.
We demonstrate that by applying a known control field, the singularity can be removed and measurement sensitivity restored.
arXiv Detail & Related papers (2023-11-28T16:32:51Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Frequency estimation under non-Markovian spatially correlated quantum
noise: Restoring superclassical precision scaling [0.0]
We study the Ramsey estimation precision attainable by entanglement-enhanced interferometry in the presence of correlatedly non-classical noise.
In a paradigmatic case of spin-boson dephasovian noise from a thermal environment, we find that it is possible to suppress, on average, the effect of correlations by randomizing the location of probes.
arXiv Detail & Related papers (2022-04-22T16:25:16Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.