Multiparameter critical quantum metrology with impurity probes
- URL: http://arxiv.org/abs/2311.16931v2
- Date: Wed, 3 Jul 2024 08:59:14 GMT
- Title: Multiparameter critical quantum metrology with impurity probes
- Authors: George Mihailescu, Abolfazl Bayat, Steve Campbell, Andrew K. Mitchell,
- Abstract summary: We introduce the two-impurity Kondo (2IK) model as a novel paradigm for critical quantum metrology.
We demonstrate that by applying a known control field, the singularity can be removed and measurement sensitivity restored.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum systems can be used as probes in the context of metrology for enhanced parameter estimation. In particular, the delicacy of critical systems to perturbations can make them ideal sensors. Arguably the simplest realistic probe system is a spin-1/2 impurity, which can be manipulated and measured in-situ when embedded in a fermionic environment. Although entanglement between a single impurity probe and its environment produces nontrivial many-body effects, criticality cannot be leveraged for sensing. Here we introduce instead the two-impurity Kondo (2IK) model as a novel paradigm for critical quantum metrology, and examine the multiparameter estimation scenario at finite temperature. We explore the full metrological phase diagram numerically and obtain exact analytic results near criticality. Enhanced sensitivity to the inter-impurity coupling driving a second-order phase transition is evidenced by diverging quantum Fisher information (QFI) and quantum signal-to-noise ratio (QSNR). However, with uncertainty in both coupling strength and temperature, the multiparameter QFI matrix becomes singular -- even though the parameters to be estimated are independent -- resulting in vanishing QSNRs. We demonstrate that by applying a known control field, the singularity can be removed and measurement sensitivity restored. For general systems, we show that the degradation in the QSNR due to uncertainties in another parameter is controlled by the degree of correlation between the unknown parameters.
Related papers
- Uncertain Quantum Critical Metrology: From Single to Multi Parameter Sensing [0.0]
We show how uncertainty in control parameters impacts the sensitivity of critical sensors.
For finite-size systems, we establish a trade-off between the amount of uncertainty a many-body probe can withstand while still maintaining a quantum advantage in parameter estimation.
arXiv Detail & Related papers (2024-07-29T11:50:21Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Characterization of partially accessible anisotropic spin chains in the
presence of anti-symmetric exchange [0.0]
We address quantum characterization of anisotropic spin chains in the presence of antisymmetric exchange.
We investigate whether the Hamiltonian parameters of the chain may be estimated with precision approaching the ultimate limit imposed by quantum mechanics.
arXiv Detail & Related papers (2024-01-25T19:26:35Z) - Quantum metric and metrology with parametrically-driven Tavis-Cummings
models [4.419622364505575]
We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field.
We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point.
arXiv Detail & Related papers (2023-12-13T14:20:03Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Criticality-Enhanced Precision in Phase Thermometry [4.508246364123997]
We study non-invasive quantum thermometry of a finite, two-dimensional Ising spin lattice based on measuring the non-Markovian dephasing dynamics of a spin probe coupled to the lattice.
We demonstrate a strong critical enhancement of the achievable precision in terms of the quantum Fisher information.
arXiv Detail & Related papers (2023-11-24T16:08:55Z) - Towards Convergence Rates for Parameter Estimation in Gaussian-gated
Mixture of Experts [40.24720443257405]
We provide a convergence analysis for maximum likelihood estimation (MLE) in the Gaussian-gated MoE model.
Our findings reveal that the MLE has distinct behaviors under two complement settings of location parameters of the Gaussian gating functions.
Notably, these behaviors can be characterized by the solvability of two different systems of equations.
arXiv Detail & Related papers (2023-05-12T16:02:19Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.