論文の概要: CALIME: Causality-Aware Local Interpretable Model-Agnostic Explanations
- arxiv url: http://arxiv.org/abs/2212.05256v2
- Date: Thu, 25 May 2023 13:14:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 23:17:37.946288
- Title: CALIME: Causality-Aware Local Interpretable Model-Agnostic Explanations
- Title(参考訳): CALIME:Causality-Aware Local Interpretable Model-Agnostic Explanations
- Authors: Martina Cinquini, Riccardo Guidotti
- Abstract要約: 本稿では,XAI手法に因果知識を統合することで,信頼性を高め,ユーザが説明の質を評価することを支援することに焦点を当てる。
本稿では、入力インスタンスの周辺で生成されたデータに因果関係を明示的にエンコードして説明する、広く使われている局所的およびモデルに依存しない説明器の新たな拡張を提案する。
- 参考スコア(独自算出の注目度): 9.339341973173804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant drawback of eXplainable Artificial Intelligence (XAI)
approaches is the assumption of feature independence. This paper focuses on
integrating causal knowledge in XAI methods to increase trust and help users
assess explanations' quality. We propose a novel extension to a widely used
local and model-agnostic explainer that explicitly encodes causal relationships
in the data generated around the input instance to explain. Extensive
experiments show that our method achieves superior performance comparing the
initial one for both the fidelity in mimicking the black-box and the stability
of the explanations.
- Abstract(参考訳): eXplainable Artificial Intelligence (XAI)アプローチの重大な欠点は、機能独立の仮定である。
本稿では,xai手法に因果知識を統合することで,ユーザによる説明の質評価を支援する。
本稿では,入力インスタンス周辺で生成されたデータの因果関係を明示的にエンコードする,広く使用される局所的およびモデル非依存な説明器への新たな拡張を提案する。
実験結果から,ブラックボックスの再現性と説明の安定性の両面において,初期手法と比較して優れた性能が得られた。
関連論文リスト
- Can you trust your explanations? A robustness test for feature attribution methods [42.36530107262305]
説明可能なAI(XAI)の分野は急速に成長しているが、その技術の使用は時々予期せぬ結果をもたらした。
多様体仮説とアンサンブルアプローチの活用が、ロバスト性の詳細な解析にどのように役立つかを示す。
論文 参考訳(メタデータ) (2024-06-20T14:17:57Z) - Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating [4.200230734911261]
いくつかのXAIモデルは、予測モデルのインプット・アウトプット関係と特徴間の依存関係を調べることによって、モデルを説明するために因果関係を考慮する。
これらのモデルの大半は、因果グラフが知られていると仮定して、反事実確率に基づく説明に基づいている。
本研究では、因果グラフが知られている制約を緩和する新しいXAIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T02:26:24Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Interpretable Data-Based Explanations for Fairness Debugging [7.266116143672294]
Gopherは、バイアスや予期せぬモデルの振る舞いに関するコンパクトで解釈可能な、因果的な説明を生成するシステムである。
我々は,学習データに介入する程度を,サブセットの削除や更新によって定量化する因果責任の概念を導入し,バイアスを解消する。
この概念に基づいて、モデルバイアスを説明するトップkパターンを生成するための効率的なアプローチを開発する。
論文 参考訳(メタデータ) (2021-12-17T20:10:00Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。