Mind The Edge: Refining Depth Edges in Sparsely-Supervised Monocular Depth Estimation
- URL: http://arxiv.org/abs/2212.05315v3
- Date: Wed, 3 Apr 2024 11:03:52 GMT
- Title: Mind The Edge: Refining Depth Edges in Sparsely-Supervised Monocular Depth Estimation
- Authors: Lior Talker, Aviad Cohen, Erez Yosef, Alexandra Dana, Michael Dinerstein,
- Abstract summary: Monocular Depth Estimation (MDE) is a fundamental problem in computer vision with numerous applications.
In this paper we propose to learn to detect the location of depth edges from densely-supervised synthetic data.
We demonstrate significant gains in the accuracy of the depth edges with comparable per-pixel depth accuracy on several challenging datasets.
- Score: 42.19770683222846
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Monocular Depth Estimation (MDE) is a fundamental problem in computer vision with numerous applications. Recently, LIDAR-supervised methods have achieved remarkable per-pixel depth accuracy in outdoor scenes. However, significant errors are typically found in the proximity of depth discontinuities, i.e., depth edges, which often hinder the performance of depth-dependent applications that are sensitive to such inaccuracies, e.g., novel view synthesis and augmented reality. Since direct supervision for the location of depth edges is typically unavailable in sparse LIDAR-based scenes, encouraging the MDE model to produce correct depth edges is not straightforward. To the best of our knowledge this paper is the first attempt to address the depth edges issue for LIDAR-supervised scenes. In this work we propose to learn to detect the location of depth edges from densely-supervised synthetic data, and use it to generate supervision for the depth edges in the MDE training. To quantitatively evaluate our approach, and due to the lack of depth edges GT in LIDAR-based scenes, we manually annotated subsets of the KITTI and the DDAD datasets with depth edges ground truth. We demonstrate significant gains in the accuracy of the depth edges with comparable per-pixel depth accuracy on several challenging datasets. Code and datasets are available at \url{https://github.com/liortalker/MindTheEdge}.
Related papers
- SparseNeRF: Distilling Depth Ranking for Few-shot Novel View Synthesis [93.46963803030935]
We present a new Sparse-view NeRF (SparseNeRF) framework that exploits depth priors from real-world inaccurate observations.
We propose a simple yet effective constraint, a local depth ranking method, on NeRFs such that the expected depth ranking of the NeRF is consistent with that of the coarse depth maps in local patches.
We also collect a new dataset NVS-RGBD that contains real-world depth maps from Azure Kinect, ZED 2, and iPhone 13 Pro.
arXiv Detail & Related papers (2023-03-28T17:58:05Z) - DesNet: Decomposed Scale-Consistent Network for Unsupervised Depth
Completion [28.91716162403531]
Unsupervised depth completion aims to recover dense depth from the sparse one without using the ground-truth annotation.
We propose the scale-consistent learning (DSCL) strategy, which disintegrates the absolute depth into relative depth prediction and global scale estimation.
Our approach achieves state-of-the-art performance on indoor NYUv2 dataset.
arXiv Detail & Related papers (2022-11-20T14:56:18Z) - Densely Constrained Depth Estimator for Monocular 3D Object Detection [48.12271792836015]
Estimating accurate 3D locations of objects from monocular images is a challenging problem because of lacking depth.
We propose a method that utilizes dense projection constraints from edges of any direction.
The proposed method achieves state-of-the-art performance on the KITTI and WOD benchmarks.
arXiv Detail & Related papers (2022-07-20T17:24:22Z) - Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
Monocular Depth Estimation [11.929584800629673]
We propose a novel network to learn an Occlusion-aware Coarse-to-Fine Depth map for self-supervised monocular depth estimation.
The proposed OCFD-Net does not only employ a discrete depth constraint for learning a coarse-level depth map, but also employ a continuous depth constraint for learning a scene depth residual.
arXiv Detail & Related papers (2022-03-21T12:43:42Z) - DynOcc: Learning Single-View Depth from Dynamic Occlusion Cues [37.837552043766166]
We introduce the first depth dataset DynOcc consisting of dynamic in-the-wild scenes.
Our approach leverages the cues in these dynamic scenes to infer depth relationships between points of selected video frames.
In total our DynOcc dataset contains 22M depth pairs out of 91K frames from a diverse set of videos.
arXiv Detail & Related papers (2021-03-30T22:17:36Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - Boundary-induced and scene-aggregated network for monocular depth
prediction [20.358133522462513]
We propose the Boundary-induced and Scene-aggregated network (BS-Net) to predict the dense depth of a single RGB image.
Several experimental results on the NYUD v2 dataset and xffthe iBims-1 dataset illustrate the state-of-the-art performance of the proposed approach.
arXiv Detail & Related papers (2021-02-26T01:43:17Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
A novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching.
DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage.
We show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset.
arXiv Detail & Related papers (2020-12-10T10:33:57Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.